5 (O INTEGRALS

5.1 Areas and Distances

1. (a) Since f is increasing, we can obtain a lower estimate by using

left endpoints. We are instructed to use five rectangles. son = 5.

5
Ls = 5 f(zi-1) Az [Az = b=2
=1

= f(zo0) - 2+ f(z1) - 2+ f(z2) - 2+ f(=3) -2+ f(z4) - 2
=2[f(0) + f(2) + f(4) + f(6) + f(8)]
~2(1+3+4.3+54+6.3) = 2(20) = 40

Since f is increasing, we can obtain an upper estimate by using
right endpoints.
5
=2[f(z1) + f(@2) + f(z3) + f(=z4) + f(25)]
=2[f(2) + f(4) + f(6) + £(8) + £(10)]

~2(3+4.3+5.4+6.3+7) =2(26) = 52

Rs

y=fx)

Comparing Rs to Ls, we see that we have added the area of the rightmost upper rectangle, f(10) - 2, to the sum

and subtracted the area of the leftmost lower rectangle, f(0) - 2. from the sum.

10-0
10

=1]

10
(b) Lio = Y f(zi—1) Az [Az =
i=1

=1[f(zo) + f(z1) + - + f(zo)]
=fO)+f1)+---+f(9)
~1+214+3+374+43+49+54+58+6.3+6.7
=43.2

Rio = 32 f() Az = f(1) 4 £(2) + -+ £(10)

add rightmost upper rectangle,

=L 1-£10)—-1-f(0
1o +1-7(10) 1 subtract leftmost lower rectangle

=43247-1=49.2
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6
2 (@ ()Le =) f(zi-1)Az [Az = 126_0 = 2] y
i=1

= 2[f(xo) + f(z1) + f(@2) + f(z3) + f(z4) + f(zs)]
=2[f(0) + £(2) + f(4) + f(6) + f(8) + f(10)]
~29+88+82+73+59+4.1)

=2(43.3) = 86.6

(ii) Re = Le +2- f(12) — 2 f(0)
~ 86.6 +2(1) — 2(9) = 70.6

[Add area of rightmost lower rectangle

and subtract area of leftmost upper rectangle.]

(i) Me = 2 f(z

=2[f(1) + f(3) + £(5) + f(7) + f(9) + f(11)]
~2(89+85+78+66+51+28)
2(39.7) = 79.4

(b) Since f is decreasing, we obtain an overestimate by using left endpoints; that is. Le.
(c) Since f is decreasing, we obtain an underestimate by using right endpoints; that is, Re.

(d) Mg gives the best estimate, since the area of each rectangle appears to be closer to the true area than the
overestimates and underestimates in Lg and Re.

3. (a) Ry = i flz) Az [Az =37 =1]
=1

= f(z1) 1+ fz2) - 14 f(z3) - 1+ f(za) - 1
= f(2)+ f(3)+ f(4) + £(5)
“ieieiei-go128

Since f is decreasing on [1, 5. an underestimate is obtained by using the

right endpoint approximation, Ry.

(b) Ly = 24: flzi—1) Az

i=1
=f)+f2)+fB3)+f(4)
=1+i+1+1=2-2083
Ly is an overestimate. Alternatively. we could just add the area of the
leftmost upper rectangle and subtract the area of the rightmost lower
rectangle; that is, Ly = Rq + f(1) -1 — f(5) - 1.
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4. (a)Rs-——zs:f(a:Z)Ax [Ar =322 =1] Y
i=1

= f(z1) -1+ f(x2) -1+ f(@s) - 1+ f(za) - 1+ fl2s) - 1
=f)+£2)+ f3) + f(4) + 1 (5)
—24+421+164+9+0=70

flry=25-x°

Since f is decreasing on [0, 5]. Rs is an underestimate.

5

(b) L5 = Z f((ti_l)Al' y

i=1

=f0)+ f(1) + f2) + fF3) + F(4)
=25+24+21+16+9=095

Ls is an overestimate.

5. (a) f(x)=1+z2andAz:2‘T(il):1 =

Rs=1-f0)+1-f(1)+1-f2)=1-1+1-2+1-5=8.

2 —

Ar=2=D o5 o

= o~

Rs = 0.5[f(—0.5) + £(0) + £(0.5) + f(1) + F(1.5) + £(2)]
=0.5(1.25+1+1.25+2+3.25 +5)
= 0.5(13.75) = 6.875

b Ly=1-f(-1)+1-f0)+1-f(1)=1-2+1-14+1-2=5
L = 0.5[f(=1) + f(=0.5) + f(0) + £(0.5) + £(1) + f(1.5)]
=05(2+125+1+41.25+2+ 3.25)
=0.5(10.75) = 5.375

(©) Ms =1-f(—0.5)+1-£(0.5)+1- f(1.5)
=1-125+41-1.25+1-3.25=5.75
Mg = 0.5[f(~0.75) + f(—0.25) + £(0.25)
+ £(0.75) + £(1.25) + £(1.75)]
= 0.5(1.5625 + 1.0625 + 1.0625 + 1.5625 + 2.5625 + 4.0625)
= 0.5(11.875) = 5.9375

(d) Ms appears to be the best estimate.
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6. (a) 2
y=e™
_ZL JZ
~1
() f(z) = e and Az = #)— =1 =
() Ra=1-f(~1)+1-£(0) (i) My =1- f(~1.5) +1- £(~0.5)
+1-f(1)+1-£(2) +1-f(0.5)+1-f(1.5)
e lildelpet — 225 4 (=025 | =025 | ,-2.25
~ 1.754 =~ 1.768
y y

(¢) (1) Rg = O.5[f(—1.5) + f(—l) -+ f(—0.5) + f(O)
+ f(0.5) + f(1) + f(1.5) + £(2)]
_ e—2.25 +€_1 +e—0.25 + 1

+e—0.25 +e—l +e—2425 +e

~ 1.761

(ii) Due to the symmetry of the figure, we see that

Mz = (0.5)(2)[£(0.25) + £(0.75) + £(1.25) + f(1.75)]

— 6—0.0625 +€_0'5625 + 6_1'5625 + 63.0625

~ 1.766

7. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let SUM = 0, X_MIN = 0, X_MAX = 7. N = 10 (or 30 or 50, depending on which sum we are calculating).
DELTA_X = (X_MAX — X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X.

2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT > X _MAX.
2a Add sin (RIGHT_ENDPOINT) to SUM.

2b Add DELTA_X to RIGHT_ENDPOINT.
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At the end of this procedure, (DELTA_X) - (SUM) is equal to the answer we are looking for. We find that

T 10 i w30 [iw m 50 . z'7r> N
= — in| — | ~ = — 5 — | =~ 1. , Rso = — — | =~ 1.9993.
Rio = 0 ;;1 sm<10> ~ 1.9835, R3o 30 ,1;1 sm<30> 1.9982, and Rso 50 1;1 sin{ -5

It appears that the exact area is 2.
Shown below is program SUMRIGHT and its output from a TI-83 Plus calculator. To generalize the program, we
have input (rather than assigned) values for Xmin, Xmax, and N. Also, the function, sin z, is assigned to Y.

enabling us to evaluate any right sum merely by changing Y and running the program.

[PROGRAM: SUMEIGHT [FromSUMRIGHT

H % S _ Amin=78

'Promrt ¥min HMax="7m

Promrt Kmax [N=7

iPromrt. N 1.983523537
fCEmax—®¥min)<H+D Done
t¥mint0=»R

tFord(Il,1,H>

1S+Y 1 (RIS
tR+0+F
tEnd
D542
iDisFp 2

. We can use the algorithm from Exercise 7 with X_MIN = 1, X MAX = 2. and 1 / (RIGHT_ENDPOINT)2 instead

1 10
f sin (RIGHT_ENDPOINT) in step 2a. We find that Ryp = — ——= ~ 0.4640,
of sin ( - ) instep 0= (Jg 1+uun
R L ! 0.4877, and R L 32 1 0.4926. 1 hat th:
= — s R an = — —— =0 . It appears that the exact area
© =302 (1+1/30) =50 2 (1+1/50)° PP

is %
. In Maple, we have to perform a number of steps before getting a numerical answer. After

loading the student package [command: with (student) ;] we use the command
left_sum:=leftsum(x™(1/2),x=1..4,10 [or30.0r50]); which gives us the expression in summation
notation. To get a numerical approximation to the sum, we use evalf (left _sum) ;. Mathematica does not have
a special command for these sums, so we must type them in manually. For example, the first left sum is given by
(3/10) *sum[Sqrt [1+3(i-1) /101, {i,1,10 }1. and we use the N command on the resulting output to get
a numerical approximation.

In Derive, we use the LEFT RIEMANN command to get the left sums. but must define the right sums ourselves.

(We can define a new function using LEFT_RIEMANN with k ranging from 1 to n instead of from O to n — 1.)

(@) With f(z) = /z, 1 < z < 4, the left sums are of the form L,, = 3 >4/l + M Specifically,
n

i=1
SRVERR
i=1

L1o = 4.5148, L3 ~ 4.6165. and Lso ~ 4.6366. The right sums are of the form R, =

Slw

Specifically, R1o ~ 4.8148, R3p ~ 4.7165, and Rso ~ 4.6966.
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(b) In Maple. we use the leftbox and rightbox commands (with the same arguments as 1eft sum and

rightsum above) to generate the graphs.

2.1 2.1 2.1
1
1 1 1

0 4 0 4 0 4
left endpoints, n = 10 left endpoints, n = 30 left endpoints, n = 50

2.1 2.1 2.1
1 1 1 “ 4
0 4 0 4 0

right endpoints, n = 30 right endpoints, n = 50

right endpoints, n = 10
(c) We know that since 1/Z is an increasing function on (1, 4), all of the left sums are smaller than the actual area
and all of the right sums are larger than the actual area. Since the left sum with n = 50 is about 4.637 > 4.6

and the right sum with n. = 50 is about 4.697 < 4.7. we conclude that 4.6 < Lso < exact area < Rso < 4.7

so the exact area is between 4.6 and 4.7.

3

10. See the solution to Exercise 9 for the CAS commands for evaluating the sums.
sin (sin 7r_(z_—_1)) .In
1 2n

(a) With f(z) = sin(sinz), 0 < @ < 5, the left sums are of the form L, = 5—7; _

particular, L1o = 0.8251, Lo = 0.8710, and Lso = 0.8799. The right sums are of the form

NgE]

R, = 21 sin (sin ﬂ) In particular, R1o =~ 0.9573, R30 = 0.9150, and Rs0 =~ 0.9064.
T =1

(b) In Maple, we use the leftbox and rightbox commands (with the same arguments as leftsum and

rightsum above) to generate the graphs.

1]

Y
(=]

left endpoints, n = 50

0
left endpoints, n = 10 left endpoints,



n.

12

13.

14.

15.

16.
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i J

Y

right endpoints, n = 10 right endpoints, n = 30 right endpoints, n = 50

(c) We know that since sin(sin z) is an increasing function on (O. %) [this is true because its derivative,
— cos(sinz)(— cos x), is positive on that interval], all of the left sums are smaller than the actual area, and all of
the right sums are larger than the actual area. Since the left sum with n = 50 is about 0.8799 > 0.87 and the
right sum with n = 50 is about 0.9064 < 0.91, we conclude that 0.87 < Lso < exact area < Rso < 0.91. so
the exact area is between 0.87 and 0.91.

Since v is an increasing function, Lg will give us a lower estimate and Rg will give us an upper estimate.

Le = (0ft/s)(0.55) 4 (6.2)(0.5) + (10.8)(0.5) + (14.9)(0.5) + (18.1)(0.5) + (19.4)(0.5)
=0.5(69.4) = 34.7 ft

Re = 0.5(6.2+ 10.8 + 14.9 4 18.1 + 19.4 + 20.2) = 0.5(89.6) = 44.8 ft

(@) d=~ Ls = (30 ft/s)(12s) +28-124+25-12+22-12 + 24 - 12

=(30428+25+22+24) - 12 =129 - 12 = 1548 ft
(b)d~ Rs = (28 +25+22424+27) - 12 =126-12 = 1512 ft

(c) The estimates are neither lower nor upper estimates since v is neither an increasing nor a decreasing function
of ¢.

Lower estimate for oil leakage: Rs = (7.6 + 6.8 + 6.2 4+ 5.7 + 5.3)(2) = (31.6)(2) = 63.2 L.
Upper estimate for oil leakage: Ls = (8.7 + 7.6 + 6.8 4+ 6.2 + 5.7)(2) = (35)(2) =70 L.

We can find an upper estimate by using the final velocity for each time interval. Thus, the distance d traveled after

62 seconds can be approximated by
6
d=73 v(t:)At; = (185 ft/s)(10s) + 319 - 5+ 447 - 5+ 742 - 12 + 1325 - 27 + 1445 - 3 — 54,694 ft
i=1

For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an
underestimate. We will use Mg to get an estimate. At = 1, so
Mes = 1[v(0.5) + v(1.5) + v(2.5) + v(3.5) + v(4.5) + v(5.5)]
~ 55440+ 28+ 18 + 10+ 4 = 155 ft
For a very rough check on the above calculation, we can draw a line from (0,70) to (6,0) and calculate the area of
the triangle: £(70)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.
For an increasing function. using left endpoints gives us an underestimate and using right endpoints results in an

' il us ; —80-0_g5¢_ 5 p_ 1
overestimate. We will use Mg to get an estimate. At = 5 =908= 355 h=;h

Me = 735[v(2.5) +v(7.5) + v(12.5) + v(17.5) + v(22.5) + v(27.5)]
= 735(31.25 + 66 + 88 + 103.5 + 113.75 + 119.25) = 755 (521.75) ~ 0.725 km

For a very rough check on the above calculation, we can draw a line from (0,0) to (30, 120) and calculate the area
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17. f

18.

19.

20.

21.

23.

of the triangle: (30)(120) = 1800. Divide by 3600 to get 0.5. which is clearly an underestimate. making our

midpoint estimate of 0.725 seem reasonable. Of course, answers will vary due to different readings of the graph.
=Yz, 1<z <16 Az =(16—-1)/n=15/nandz; =1+iAz =1+ 15i/n.
A= hm R, = lim Zf(xy)Ar— lim Z 14 18815

n—o0 ,; n—oo ;] n

1
f(z) = — BT 3< <10 Az =(10-3)/n="7/nandz; =3+iAz =3+ 7i/n.

x
A= lim R, = lim wal YAz = lim iw

n— oo n—o00 ; n—00 ;7 3 -+ 7’[,/71

f(z) =zcosz, 0 <z < E. Az = (E —0)/n= %/nandxi =0+iAzr = %Z/’n

A= lim R, = hm Zf(a:1 z = lim Z-Z—?lc S(ZTF)-L

T
n

n—oo 2n 2n ’

"2 20" :
lim E — (5 + —1> can be interpreted as the area of the region lying under the graph of y = (5 + )% on the
n—00 4 1 n n

_ D) ;
2-0 :—,a:i:0+z‘A:r:%.andm§ =z, the

interval [0, 2], since for y = (5 + z)'* on [0, 2] with Az =

n n
. - 2i\'’ 2
expression for the area is A = lim Z f(zi) Az = lim Z <5 + —) = . Note that the answer is not unique.
n—oo 4 n—oo 4 7 n n
i= i=

We could use y = z° on [5, 7] or, in general. y = ((5 — n) + z)on [n,n +2].

lim Z — tan 1— can be interpreted as the area of the region lying under the graph of y = tanx on the interval
n—00

7/4-0 :—7r—,wi:0+iAz=ﬂ,andm§‘ = x;, the
in 4an

s

[0, Z]. since for y = tanz on [0, §] with Az =

n
expression for the areais A = lim Z f(zi)Az = hm Z tan< ) — . Note that this answer is not unique,
n—00 4

since the expression for the area is the same for the function y = tan(z — k) on the interval [k:‘rr, km + ﬂ , where

k is any integer.

n . 3
1-0 1 1 1
3 = — = — ¢ i = iAx =—. A= 1 n—l 1,A—1 - I
(a) Az - nandm 0+:1Ax nl_{l;.QR im_ E f(z:) Az ngl;oél(n) o
n 2
5 _ 123_ 1 [n(n+1) (n+1)2_1 . 1 1
(®) nh_)n;o n3 ~—7}EI;O n4 _1? nh—>nc}o n4|: 2 —nl——»oo 4n? _41}—120 1+n T4
(@) y = f(z) = 2°. Aat:—g—o:zandaci:O—i»iAa::—Z
n
no(2\° 2 n 325 2 . 64
= n — i - - == — =1 )
A= nlLII;OR hm Zf(w)Aw lun ;1<n) i nLn;orl 5, = .Am g Z:lz

2(n+1)*(2n° +2n - 1)
12

n n
ORI
721

l 64 n (n+1)2(2n2+2n—1) _ 64 lim (n2+2n+1)(2n2+2n—1)
(C) ek oo nbd . 12 12 n—oo n2-n2
1 2 1
~ 16 i <1+3+—2>(2+———):%1-2:%
3 non

n—oo n n?2
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2 2 —2i H & —2i/n 6—2(62 — 1)
24. From Example 3(a), we have A = lim < > e /" Using a CAS. Ye =~ and
n—oo N 5 i=1 es/n —1
N Gl 1) -2/ 2 . -
lim = . =e (e’ — 1) ~ 0.8647. whereas the estimate from Example 3(b) using Mj,
n—oon  e2/m _]
was 0.8632.
2% y=f(z) = A —b—0~éandm'—0+2’Am—g
-y = f(x) =cosz. Az = = i = =
1
n n bi b bsm(b(—n+1>> b
A= lim R, = lim g f(z) Az = lim cos(-z> 2L Jim — — | Dsinp
n—oo n—oo £ n—o0 4 n n n—oo . 2n
i=1 i=1 2n SlIl(%)

Ith = Z.then A = sin g =1.

26. (a) The diagram shows one of the n congruent triangles, A AO B, with

o
e central angle 27 /n. O is the center of the circle and AB is one of the
" sides of the polygon. Radius OC is drawn so as to bisect ZAOB. It
A \\r:j B follows that OC intersects AB at right angles and bisects AB. Thus,

c

AAOB is divided into two right triangles with legs of length
3(AB) = 7sin(m/n) and r cos(m /n).
AAOB has area 2 - L[rsin(w/n)][r cos(m/n)] = r?sin(m/n) cos(r /n) = $r?sin(27/n). so

An =n-area(AAOB) = 3nr?sin(2n/n).

. . sinf . . .
(b) To use Equation 3.4.2, gm}) 5 = 1. we need to have the same expression in the denominator as we have in

the argument of the sine function—in this case, 27 /n.

lim A, = lim gnr? sin(27/n) = lim %nrzm s = lim wﬂrz. Letd = 2_7r
n—oo n—oo n—o0 27T/7’L n n—oo n n

Thenasn — 00,0 — 0,50 lim wﬂr2 = lim 51n07rr2 =) 7r? = nr?,

n—oo  27/n 6—0

5.2 The Definite Integral

4
1. Ry = Z flzi) Az [z =z isa right endpoint and Az = 0.5] y
i=1 2 fl)=2-x?

=05[£(05) + f(1) + F(1.5) + £(2)]  [f(z) = 2 — 2]
=05[1.75+1+ (—0.25) + (-2)]
= 0‘5(0.5) =0.25

The Riemann sum represents the sum of the areas of the two rectangles

above the z-axis minus the sum of the areas of the two rectangles below

the z-axis; that is, the ner area of the rectangles with respect to the z-axis.
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6
2. Lg =Y flzim1)Az [z} = zi_1 is a left endpoint and Az = 0.5]
=1

=0.5(f(1) + f(1.5) + f(2)
+F(25) + f3) + f(35)]  [f(@) =lnz—1]
~ 0.5(—1 — 0.5945349 — 0.3068528
— 0.0837093 + 0.0986123 + 0.2527630)
= 0.5(—1.6337217) ~ —0.816861
The Riemann sum represents the sum of the areas of the two rectangles
above the z-axis minus the sum of the areas of the four rectangles below

the z-axis: that is. the ner area of the rectangles with respect to the z-axis.

5
3.M; =Y f(@) Dz [zi =Ti = 1(xi—1 + ;) is a midpoint and Az =1]
=1

=1[f(1.5) + f(2.5) + f(3.5)
+f(45) + f(58)] (@) =vE—2]
~ —0.856759
The Riemann sum represents the sum of the areas of the two rectangles
above the z-axis minus the sum of the areas of the three rectangles below

the z-axis.

6
8 () Re = . f(zi) Az [zi =ziisa right endpoint and Az = 0.5]
i=1

=0.5[f(0.5)+ f(1) + f(1.5) + f(2)
+f@25)+f(3) [f(e)=z~— 25sin 2z]
~ 5.353254
The Riemann sum represents the sum of the areas of the four rectangles
above the z-axis minus the sum of the areas of the two rectangles below

the x-axis.

6
() Mg = . f(@) Az [z} =Tiisa midpoint and Az = 0.5]
=1

= 0.5[f(0.25) + £(0.75) + f(1.25) + F£(1.75)
+f(2.25) + f(2.75)]  [f(x) =2~ 2sin 2]
~ 4.458461
The Riemann sum represents the sum of the areas of the four rectangles
above the z-axis minus the sum of the areas of the two rectangles below

the z-axis.

5 Az —(b—a)/n=(8-0)/4=8/4=2.

(a) Using the right endpoints to approximate f(? f(z) dx, we have

fixy=Inx—1

y f(x)=x—2sin2x

al
a1
51
A\
05 1 5. Wi S
O/ 15 2 25 3 35 %

S ) Ar = 20f(2) + F@) + 1(6) + FE) AL+ 2+ (D =4

i=1



SECTION 5.2  THE DEFINITE INTEGRAL
(b) Using the left endpoints to approximate Jo x) dz, we have

:Zlf(mi—l)AHJ:2[f(0)+f(2)+f( )+ F6)]~202+1+2+(-2)]=6.

(¢) Using the midpoint of each subinterval to approximate fos f(z) dz, we have

éflf(ff)Aw=2[f(1)+f(3)+f( 5+ f(M~2B+2+ 1+ (-1)] =

6. (a) Using the right endpoints to approximate ffg 9(z) dz. we have

IIM@

g(w:) =19(=2) + 9(=1) + g(0) + (1) + g(2) + g(3)]
~1-05-15-15-05+25= 05

(b) Using the left endpoints to approximate f_33 9(z) dz, we have

3% 0(21-1) A = 1ig(-9) + 6(-2) + (1) + 6(0)+ o(1) + 9(2)

~24+1-05-15-15-05=—

(c) Using the midpoint of each subinterval to approximate f_33 g(x) dz, we have

’i:il 9(Ti) Az =1[g(-2.5) + 9(=1.5) + g(—0.5) + 9(0.5) + g(1.5) + 9(2.5)]

~154+0-1-175-1405=-1.75
1. Since f is increasing, Ly < 25 f(z)dz < Rs.

Lower estimate = Ly = Zslf(x;_l) Az =5[f(0) + f(5) + £(10) + £(15) + £(20)]

=5(—42 - 37— 25— 6+ 15) = 5(—95) = —475

Upper estimate = Ry — i_il F@) Az = 5[£(5) + 7(10) + £(15) + £(20) + £(25)]
=5(=87~ 25— 6+ 15 + 36) = 5(~17) = —85
8. (a) Using the right endpoints to approximate f06 f(z) dzx. we have
i;l F(@:) Az = 2(£(2) + f(4) + £(6)] = 2(8.3+ 2.3 — 10.5) = 0.2
(b) Using the left endpoints to approximate fo z) dz, we have

; F(@is) Az = 2[£(0) + f(2) + f(4)] = 2(9.3+ 8.3+ 2.3) = 30.8

(©) Usmg the midpoint of each interval to approximate f f(z) dz, we have

Z f@) Az =2[f(1) + £(3) + £(5)] = 2(9.0 + 6.5 — 7.6) = 15.8.

]

443
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10.

1.

12.

13.

14.

The estimate using the right endpoints must be less than fOG f(z) dz. since if we take z; to be the right endpoint x;
of each interval, then f () < f(z) for all z on [z;—1,:]. which implies that f(z:) Az < ff_‘;l f(z) dz. and so

3 3
the sum Y. [f(zi) Az] < ) [f;’ . f(x) daz] = f(? f(z) dz. Similarly, if we take 27 to be the left endpoint ;-1
i=1 i=1 "

3

of each interval, then f(z:—1) > f(z) forall z on [zi—1,xi]. and s0 S [f(zica) Az] > f(f f(x) dz. We cannot
=1

say anything about the midpoint estimate.

. Az = (10 — 2)/4 = 2, so the endpoints are 2, 4.6. 8. and 10, and the midpoints are 3, 5, 7, and 9. The Midpoint

4
Rule gives [,° Va® + 1dz ~ ), f(Ti) Az = AVEF L+ VB + 1+ VP +1+ VO 1) ~ 124.1644.
i=1

Az = (7 — 0)/6 = Z. so the endpoints are 0. §. Zr 3z 4 3. and 87 and the midpoints are

m 3w bm 7w

12° 12° 12° 12°
kg

15 and L% The Midpoint Rule gives

6
[y sec(z/3) dz = Z:lf(i,) Az = Z(sec 35 + sec 3 + sec 3% + sec T2 + sec 55 +sec 1) ~ 3.9379.

Az = (1 —0)/5 = 0.2, so the endpoints are 0.0.2.0.4.0.6, 0.8, and 1, and the midpoints are 0.1. 0.3.0.5.0.7.
and 0.9. The Midpoint Rule gives

5
Jy sin(z?) dz = 3 f(T:) Az = 0.2[sin(0.1)% + sin(0.3) + sin(0.5) + sin(0.7)2 + sin(0.9)?] ~ 0.3084.

i=1
Az = (5 — 1)/4 = 1, so the endpoints are 1.2.3. 4, and 5. and the midpoints are 1.5. 2.5, 3.5, and 4.5. The
Midpoint Rule gives

4
[Patemda~ 3 f(@)Dr= 1[(1.5)% " + (2.5)%e725 + (3.5)%e>° + (4.5)%e”*®] ~ 1.6099.

n=1

In Maple, we use the command with (student): to load the sum and box commands, then
m:-middlesum(sin(x*2) ,x=0..1,5); which gives us the sum in summation notation, then
M:—evalf (m) ; which gives Ms ~ 0.30843908, confirming the result of Exercise 11. The command
middlebox (sin (x*2),x=0..1,5) generates the graph. Repeating for n = 10 and n = 20 gives
Mo =~ 0.30981629 and Mzo ~ 0.31015563.

See the solution to Exercise 5.1.7 for a possible algorithm to calculate the sums. With Az = (1 — 0)/100 = 0.01
and subinterval endpoints 1, 1.01, 1.02. .. .. 1.99. 2. we calculate that the left Riemann sum is

1

0

100 100
Lo = 5 sin(z?_,) Az = 0.30607. and the right Riemann sum is Rioo = Y. sin(z?) Az =~ 0.31448.
i=1 i=1

Since f(z) = sin(z?) is an increasing function. we must have Lioo < [, sin(z?) dz < Rioo. 50

0.306 < Lioo < fol sin(x?) dz < Rioo < 0.315. Therefore, the approximate value 0.3084 ~ 0.31 in Exercise 11

must be accurate to two decimal places.



15. We'll create the table of values to approximate Jy sinz dz by using the

program in the solution to Exercise 5.1.7 with Y; = sin z. Xmin = 0,

Xmax = 7, and n = 5. 10. 50. and 100.

The values of R,, appear to be approaching 2.

16. [ e=" dz with n = 5. 10, 50, and 100.
The value of the integral lies between 0.872 and 0.892. Note that
5 | 1.077467 | 0.684794 f(z) = e is decreasing on (0, 2). We cannot make a similar statement
10 | 0.980007 | 0.783670 for f_zl e*" dz since [ is increasing on (-1, 0).
50 | 0.901705 | 0.862438
100 | 0.891896 | 0.872262
12.0n [0, 7], lim Y z;sinz; Az = Jo zsinzdz.
N0 =1
18. On [1,5]. lim ° e Az = /5 ¢ dz
’ ’ .n_’°°1j=11+zi - 1 1+-T ’
19. On [1,8], lim Z V2x; +(27)? Az = [P /22 + 22 dz.
20. On [0,2], lim z [4=3(2})* +6(21)°) Az = [2(4 - 322 + 62°) de.

TL—’OO

21. Note that Az = u = E and z;

SECTION 5.2  THE DEFINITE INTEGRAL
n R,
5 | 1.933766
10 | 1.983524
50 | 1.999342
100 | 1.999836

67

=—1+1Az——1+—

1=

= lim 3" f(z) Az = lim 3 [1 +3<-1 ; %)J 6
1 i=1

L6 18i - 184
=1 — -2+ —| = lim — —
nzl;nzlzl[ + n] HLH;M{ZI_ZJ 2) Z_l
. 18 N , 18 n(n+1)
= lim —|— _E = B — . ART )
ng{.lon[ 2n + n P Z} nlLlT:o [ 2n + n 2
. 1
= lim [ 124+ 08 MJ = lim [~12+54’hLl
n—oo 2 n— 00 n
= lim [—12+54<1+%>J =—-12+54-1=42
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4 n
22. / (z® 4+ 2z — 5)dz = lim Z f(zi)Az [Az =3/nand z; = 1+ 3i/n]
1 n—o0 “—

i=1

() 3) ] ()

6i  9i° 6i
1+—Z+9%+2+—Z—5>]
n n n

— lim gz‘n(n+1)(2n+1)+§.n(n+1)ﬁg.n
n—oo n3 6 77,2 2 n
_ 1im<g-n+1-2n+1+18 n+1_6)
n—oo\ 2 n n

Il
=
e

| me—
ol ©
/N

—

+
3=

N———
/N

[

+
S~
N——

+

p—

0
/N

—_

+
S|
N——

|
L2

Il

%<

2-0

9
23. Note that Az = :%andm;:O—i—iAx:;l.

2 2 - - 4i%\ (2
/0(Q—I)dw:,}ﬂ;ﬂwi)Am:,}lﬂo;<2—?)(ﬁ)
2l 4 <ol 2 4 oo
—35205[22‘@:11}—JL%;(Q"‘nz, )
+

i=1

1
— lim 48 @D g, g4 ntl 2ot
n—oo n3 6 3

i 4 1 1 4 4
231&[4—5(14—;)(24-5)]=4—§~1-2=§
5 n
24./ (1+2:c3)d:1:: lim Zf(wi)Ax [Az = 5/n and z; = 5i/n]
0 nqooi:l

L= 12533\ (5 e 250 o .3
(e ) () - [E B ]

i=1 i=1

.5 250 <~ 3\ _ 1 1250 n?(n+1)*
= lim —(11’14’?21)—”}2}&)\:54— n4 . 1

n—oo T
i=1

1)? 1)\’
= lim {5+312.5-(—”:2—)} — lim {5+312.5(1+5) }

=543125=3175

n—oo

9.1.2+18 1-6=21
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25. NotethatAm:%=%andmg=1+2'Am=1+i(1/n):1+i/n,
il i\/1 Ie=/n+i\°
[ d“JL";to% a3 (1+7) (ﬁ)zn‘i“éoz;< +)
B n B 1 n 5 n ). n o n 3
_nan;on Z n® + 3n% + 3ni® +z) nler;F[Zn +23n Z+Z3m +Zz
B i n ‘ n '2 n 3
_nl—len;on n-n®+3n2 §z+3n;z +Z;ZJ

3 .n(n+l)+i.n(n+1)(2n+1)+i.n2(n+1)2}

Il
5

|
=
g8
— l_—’-—‘_| —
N |
3

n? 2 n3 6 n4 4

3 n+l1 1 n+1 2n+1 1
=, . 4+ .
2 n n 4
n—oo 2 n 2 n n

2. (a) Az =(4-0)/8 =05andz" = z; = 0.5:.

f04 (z? - 3z) dz ~ ié f(z?) Az
=05{[0.5* —3(0.5)] + [1.0% — 3(1.0)] +---
+[3.5% - 3(3.5)] + [4.0? - 3(4.0)]}
=3(-§-2-9-2-340+1+4)=_15

(c)/ (2 - 3z dm:nlirrgoi [(%)2—3<%>J<%) (d) [y} (2? - 3z) dz = A; —

where A, is the area marked 4 and
416, 128 .
= lim = |22 § _ -z ; Ao is the area marked —.
im [ i - E zJ

I
'5—:

=1
64 n(n+1)(2n+1) _ 48 n(n+1)
n—oo | N3 6 n? 2

)-s+ )

|
b=
E

l
—

—

+
S
N——
~

[\

+
3 |-

2 /abxdm: - b—ai {a+b;aiJ ~ im [a(bn_a);; (b_a) Z J

n—oo n i=1 n—oo
. (b—a) (b—a)® n(n+1) . (b—a)? 1
= lim | ——~ . = — 7 =
nl—>oo { n n+ n2 2 a (b (1) + nh—{go 2 (1 + TL)

:a(b~a)+%(b~a)2:(b—a)(a+%b—%a) :(b~a)%(b+a):%(b2—a2)
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b n 2 n
2, . b-a b—al® . b-a 2 b—a. (b—a)2,2
28. /a T dm—nango - El[a+ - z} = lim E {a + 2a - i+ — z}

n—0o0 n

i=1
(b—a)® <~ 2 2a(b—a)’ w~ ., a’(b—a) =
n3 Zz + n? le+ n Zl
i= i=1

~ im [(b~a>3n<n+1><2n+1>+2a(b~a>2n<n+1)+a2<b—a)n]
|

n3 6 n? 2 n

(b‘6“)3 1 <1+%> <2+%> +ab-a)-1: (1+%> +a2(b—a)}

I

bh— 3 3 __ 2 2; 3
:(—3L)+a(b—a)2+a2(b—a):b 3ab —?}:3ab 9 4 ab® —2a%b+a® +a’b—ad®
b3 3 3 3
:g—%~ab2+a2b+ab2~a2b:b 3“

6—2

29. f(z) = a=2>b=6 and Az = — = % Using Equation 3. we get z; = z; =2+ 1Az =2+ ﬂ
n

1425’

6 n 2+ﬁ
so/ T _dr= lim R, = lim Z————il———é
2 1+.’135 n—oo n—oo 4 44 5 n
n
10-1 9

30.A:1::——:ﬂandmi=1+z’Ax:1+%.so
n n n
10 n . .
9¢ 9% 9
—4 = li = 1i 14— ) —4l — |-
(x —4lnz)dx nBI;oRn nEI;o ;21 [( + n) n<1+ n)} -

M. Az = (r —0)/n =n/nandz] =z = mi/n.

1

T n n . 1 2
./0 sin 5z dr = nli_{%o;(sin5zl)(%) = 1520; (sin %)% L m lim COt(Z—Z) A8 ﬂ‘(%) ==
32 Az =(10-2)/n=8/nandz] =z; =2+ 8i/n.
10 n .\ 6 n .\ 6
81 8 1 81
6 T ot S\ _ . 2 ot
[ st =t (o 3) () o (24 )
A ¢ pim L 64(58.593n° + 164.052n° + 131,208n" — 27.776n” + 2048)
B =T 21nd
CAS 1,249,984\ _ 9.999.872
A5 g(L249081) — 9998872 »~ 1.428,553.1
33. (a) Think of f02 f(x) dz as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is
A=1(b+B)hso [y f(z)dz = 3(1+3)2=4
) [° f(a)de =[] f@)de + [; f(z)dz + 7 f(z) da
trapezoid rectangle triangle
=1a+32+ 31 + 1.2.3 =443+3=10
(c) f57 f(z) da is the negative of the area of the triangle with base 2 and height 3. f57 f(z)de=—-3-2-3=-3.



34.

35.

36.

37.

38.

2 . .
. [ 1 || dz can be interpreted as the sum of the areas of the two shaded

SECTION 5.2  THE DEFINITE INTEGRAL

(d) f79 f(z) dz is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals
—3(B+b)h =—1(3+2)2 = —5. Thus.
fo dm_[o dz+j5 dm+f7 r)dr =10+ (-3) + (—5) = 2.

(a) fo z)dr =3-4-2=4 (areaof a triangle)
(b) f; g(z)dz = —3m(2)* = —21  (negative of the area of a semicircle)

© f5 9(z)dz = $-1-1=1 (areaof a triangle)

fJg(x d:v—fog(m)dx+f2 (z)dz + [ g(z)dz =4 — 2r+ 3 =45-2r

f03 (32— 1) dz can be interpreted as the area of the triangle above the x-axis

minus the area of the triangle below the x-axis: that is.

a

S0(3) - @M =1-1=-2.

fi V4 — 22 dz can be interpreted as the area under the graph of
f(x) = V4 — 22 between z = —2 and z = 2. This is equal to half the area of

the circle with radius 2. s0 [*, V4~ 2% dz = 1r . 2% = 2r.

i 33 (1+v9 = 27) dz can be interpreted as the area under the graph of

f(x) =14 v9 — 22 between 2 = —3 and z = 0. This is equal to one-quarter

the area of the circle with radius 3, plus the area of the rectangle, so

f33(1+\/9—m2)dx=%W-32+1-3=3+§7r.

ffl (3 — 2z) dz can be interpreted as the area of the triangle above the x-axis
minus the area of the triangle below the x-axis: that is.

DO - 3@ -2 -1=4

triangles; that is, 3 (1)(1) + 1(2)(2) =

+

[SIES

5
5-

N[

(2.2)
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40.

(=]

a1.

42.

43.

45,

46.

4].

49.

50.

51.

52.

53.

54.

55.

O CHAPTERS5 INTEGRALS
|z — 5| dz can be interpreted as the sum of the areas of the two shaded y
triangles; that is, 2(3 ) (5)(5) = 25. i
o] 5 10

f; Vidt = — |, 49 Vidt [because we reversed the limits of integration]

=— f 49 Vrdz [we can use any letter without changing the value of the integral]

38
3

fll 22 cos z dx = 0 since the limits of integration are equal.

Ji(5 - 62*)dz = [y bdz —6 [y a*de=5(1-0)-6(5) =5-2=3

Pt —1)de =2 [Petdr — [{1dz=2(c® —¢) ~1(3—1) = 2" —2e — 2

faex'”dx:fge’” ~e2d:c262ffezdm:e2(e3—e) =e®—é

f”/2(2cos:c—5ac dw—foﬂ/ 2cosmdac—f"/25mdw 2f"/2cos:cdm#5f"/2 dzx

(/2 —0* _,_5c

=2(1) -5 2

[2, f(z) dz + 7 f(z)dz — [, flz)dz = [2, f(z)dz + [~2 f(z)dz [by Property 5 and reversing limits]
= ffl f(z)dzx [Property 5]

.fl f(=) d:c—fl d:v—f4 f(z)dz =12 —-36 =84

Jo12f(x) +3g(x)) dz =2 [§ f(@)dz+3 12 g(x) dz = 2(37) + 3(16) = 122

3 forx <3 5 )
If f(z) = .then [ f(x) dz can be interpreted as the area of y
z forx >3 st

the shaded region, which consists of a 5-by-3 rectangle surmounted by an 3]

isosceles right triangle whose legs have length 2. Thus,

2 f(e) dz = 5(3) + 3(2)(2) = 17. 0
0 <sinz < lon [0, z].s0 sin® z < sin?z on [0, =]. Hence, fO"M sin® z dz < foﬂ/‘l sin® z dz (Property 7).

5_—z>3>x+1on[l,2],s0v5 —ar:>\/m—i—1andf1 V5 ——md:c>fl vz + ldz.

If — 1<$<1then0<m <1and1<1+m <2, sol<\/1+m2<\/_and
11— (- ]gf V1+z2dz < v2[1 - (=1)] [Property 8]; that is, 2<f VI+z2dz <2V2.

<z <Z.s0 ol(% - %) < f"/231nmdz <1(% - Z) [Property 8]; that is,

1f1§x§2_men§g§§ ol@-1)< [Pldz<i@2-1ory < [fide<1
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56. If0 <z <2 then0 < 2% <8 s01 <z +1 <9and1 < vz3+1 < 3. Thus.
1(2-0) < [ vVa¥+Tde < 3(2 - 0) thatis. 2 < [ V2% T 1dz < 6.

5115 <z < fthenl<tanz <V3.sol(-%) < [Ptanzdr < V3(Z - I)or
I < :/43 tanz dz < /3.

58. Let f(z) = 2> — 3z 4+ 3 for0 < z < 2. Then fl(z) =32* -3 =3(z + 1)(z — 1), so f is decreasing on (0,1)
and increasing on (1,2).  f has the absolute minimum value f(1) = 1. Since f(0) = 3 and f(2) = 5, the absolute
maximum value of f is f(2) = 5. Thus. 1 < 2® — 3z + 3 < 5 for z in [0,2]. 1t follows from Property 8 that
1:(2-0) < [Z(2® ~ 32+ 3)dz < 5- (2 - 0): thatis. 2 < Jo (#* = 3¢ +3) de < 10.

59. The only critical number of f(x) = ze™* on [0,2] is z = 1. Since £(0) = 0. f(1) = e ! 2 0.368, and
f(2) = 2e72 ~ 0.271. we know that the absolute minimum value of f on [0,2] is 0. and the absolute maximum
ise™!. By Property 8, 0 <ze™ <e 'for0<z <2 = 0(2-0) < f02 re dr <e (2 - 0) =
0< f02 ze " dz < 2/e.

60. Ifiﬂ <z< 4§7r. then Ag <sinz <1 and % <sin’z < 1.s0 %(%ﬂ' - iw) < :74/4sin2zda; < 1(%# - %77);
thatis, 27 < f:;r4/4 sinzdz < i

61. Vot +12> Vot = % 50 [P VaT T 1dz > [P do = 1(3° - 1) =2,

62. 0 <sinz <1for0<z< S.sozsinz <z = fo"/zzsinwdz < fow/za:da: = %[(%)2 - 02] = %2.

63. Using a regular partition and right endpoints as in the proof of Property 2, we calculate
fabcf(:c) dz = lim 3 cf(z:) Az = lim ¢ f(z:) Az = ¢ lim > fl@i) Az = cf: f(z) dz.

n—oo i=1 n—oo i=1 n—oo i=1
64. As in the proof of Property 2. we write fab f(z)dz = lim 3 f(z;) Az. Now f(zi) > 0and Az > 0, so
n—00 i1
f(zi) Az > 0 and therefore 3 f(z;) Az > 0. But the limit of nonnegative quantities is nonnegative by
i=1

Theorem 2.3.2, so f: f(z)dz > 0.

65. Since — | f(z)| < f(z) < |f(2)]. it follows from Property 7 that
b
Sl @lde < [ f@de < [N @de > |f2 f@)da| < [215(0)] do

Note that the definite integral is a real number. and so the following property applies: —a <b<a = | <a

for all real numbers b and nonnegative numbers a.

66. ,fow f(z)sin 2z d:r' < fOQW |f(z)sin2z|dz [by Exercise 65] = 27 ()] |sin 2z|dx < f02" |f(z)| dz by
Property 7, since |sin2z| <1 = [f(2)] [sin 22| < |f(x)].

67 limiﬁ— li 12": AN *d

.n—>ooi:1 n5hni>noloni¥1 n - 0 r T
- 1 ' dz

68. lim — =

neo 1 1+ (i/n)? /0 1+ 22
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> <1+%>.Then

69. Choose x; = 1 + i andz; = /Ti1Z; = \/Z
n

2 n
_2 . 1
/lx dx:nlggogg =TT

1
= l'
n‘_.’“go"; (nti-1)(n+i)

. 1 1
= li — - by the hi
n‘l‘éo”;<n+i41 n+i> [by the hint]

Il

n—1 n
1
1' —

Jim n (Z Z,m)

1=0 i=1
= lim n l+ PN Lot
T oo n+1 om—1 n+1 m—1" 2n
= lim n(l — ) hm —l) =1

DISCOVERY PROJECT Area Functions

1. (a) (b)

As in part (a),
Area of trapezoid = (b1 + b2)h Alz) =13+ @z + 1)z - 1)
1
5(3+7)2 12z +4)(z—1)
= 10 square units =(z+2)(z—-1)

Or:
Area of rectangle + area of triangle

= brhr + %btht
= (2)(3) + 3(2)(4) = 10 square units

= 2% 4+ = — 2 square units

(c) A'(x) = 2z + 1. This is the y-coordinate of the point (z,2z + 1) on the given line.



2. (a) Y
y=1+1r?
(v, 1+ x?)
(d) 7 y=1+7
(x+h 1+ (x+h)?)

;/A(,\ +h) —A(x)

-1 0 X xth
A(z + h) — A(z) is the area under

the curve y = 1 4t fromt = z to
t=z+h.
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(b) A(z) = [*) (1+¢*)dt = [*, 1dt+ [* £*dt [Property 2]

z® — (=1)® | Property I and
=1z - (-D]+ 3 Exercise 5.2.28

—o1+dad 4!
~ 4o
(¢) A'(z) = 2® + 1. This is the y-coordinate of the point

(.z" 14 :1:2) on the given curve.

(e) Y

y=1+¢

(x. 1+ x%)

-1 0 x x+h 1
An approximating rectangle is shown in the figure.
It has height 1 + 2°. width h. and area h(1 + z?). so
Az +h) - A(z) ~h(1+2%) =

A(a:+h})L—A(:c) 142

(f) Part (e) says that the average rate of change of A is approximately 1 + z2. As h approaches 0, the quotient
approaches the instantaneous rate of change—namely. A’(z). So the result of part (c), A'(z) = 22 + 1. is

geometrically plausible.

3. (@ f(z) = cos(x2)

—

<

-1.25

(b) g(x) starts to decrease at that value of z where cos(tz) changes from positive to negative: that is, at about

r = 1.25.
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(¢) g(z) = [ cos(t?)dt. Using an integration command. we (d) We sketch the graph of ¢’ using the
find that g(0) = 0. g(0.2) ~ 0.200, g(0.4) ~ 0.399. method of Example 1 in Section 2.9. The
9(0.6) ~ 0.592. g(0.8) ~ 0.768. g(1.0) ~ 0.905. graphs of g'(z) and f(z) look alike. so
9(1.2) ~ 0.974. g(1.4) ~ 0.950, g(1.6) ~ 0.826. we guess that ¢'(z) = f(z).

9(1.8) ~ 0.635. and g(2.0) ~ 0.461.

4. Tn Problems 1 and 2. we showed that if g (z) = [ f(t) dt. then g (z) = f(z). for the functions f(t) = 2t + 1 and
f(t) = 1+ > In Problem 3 we guessed that the same is true for f(t) = cos(t?), based on visual evidence. So we
conjecture that g’(z) = f(x) for any continuous function f. This turns out to be true and is proved in Section 5.3

(the Fundamental Theorem of Calculus).

5.3 The Fundamental Theorem of Calculus

1. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this

theorem and the paragraph that follows it at the end of Section 5.3.

2. (@) g(z) = J7 f(t)dt.s0 g(0) = [y f(t)dt = 0. )
g(1) = fol f(t)dt =3 -1-1 [areaof triangle] = 3. 6
9(2) = [2f(t)dt = [} f(t)dt+ [} f(t)dt [below the z-axis] g
=1-3-1-1=0.
o .3 a1 1.1 _1 1
9g3) =g+ [J ft)dt=0—35-1-1= L e -
9(4) =g(3) + 3 f()dt =3 +3-1-1=0

g(5) = g(4) + [2 f(t)ydt =0+15=15.
g(6) = g(5) + [ f(t)dt =1.5+2.5 =4

(b) g(7) = g(6) + f67 f(t)dt =~ 4+ 2.2 [estimate from the graph] = 6.2.

(¢) The answers from part (a) and part (b) indicate that g has a minimum at x = 3 and a maximum at x = 7. This

makes sense from the graph of f since we are subtracting areaon 1 < < 3 and adding areaon 3 < z < 7.
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3. (@) g(z) = [ f(t)dt. @
9(0) = J3 S(®)dt =0 "
g(1) = fol f(t)dt =1-2 =2 [rectangle]. g
9(2) = [y f(&ydt = [} f(t)dt+ [ f(t)dt = g(1) + [2 f(t) dt
=24+1-2+ 5 -1-2=5 [rectangle plus triangle], i
9(3) :fj’ fydt=g2)+ [0 f(t)dt=5+11.4=1 ol 1 1
g(6) =g(3) + fs t)dt [the integral is negative since f lies under the z-axis]
=7+ [~(5.2.2+1~2)] =7-4=3
(b) g is increasing on (0, 3) because as x increases from 0 to 3. we keep adding more area.
(¢) g has a maximum value when we start subtracting area; that is, at z = 3.
4. (a) g(— f_ t)dt =0.9(3) = [ f(@) f_ f(t)dt + fo t) dt = 0 by symmetry, since the area
above the z-axis is the same as the area below the axis.
(b) From the graph. it appears that to the nearest 1. g(—2) = f__32 ft)dt = f f(t)dt ~ 33,

and g(0) = [°, f(t)dt ~ 51.

(c) g is increasing on (—3, 0) because as z increases from —3 to 0, we keep (e)
adding more area.
(d) g has a maximum value when we start subtracting area; that is. at z = 0.

(f) The graph of ¢'(z) is the same as that of f(z). as indicated by FTCI.

5. (a) By FTCl with f(t) = t* anda = 1. g(z) =
g'(z) = f(z) = 2*.
(b) Using FTC2. g(z) = [ t?dt = [3¢°]] = 12° -1 =
g'(z) = z2.
/
6. y A (a) By FTC1 with f(t) = 1 + v%and a = 0,

= (1+vt)dt = ¢()=fx)=1+z

(b) Using FTC2. g(z) = [* (1 + v/) dt = [t + §t3/2]: — x4 232

= g@)=1+2" =1+ z

0 X t
1. f(t) = v1+2tand g(z) = [7 /T + 2t dt. so by FTCI. g'(z) = f(z) = V1 ¥ 2z.
8 f(t) =Intand g(z) = fl Intdt. soby FTCI. ¢'(z) = f(z) = Inz.

9. f(t) =t*sint and g(y = [Y¢*sintdt, so by FTCI. ¢/ (y) = fy) = y?siny.

10. f(z) = e —— and g(u) = /; 1 dz, 50 g'(u) = f(u) = _ 1

T + x2 u+u?’
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M. F(z) = ff cos(t?) dt = — [J cos(t?) dt = F'(z) = —cos(z?)

12. f(6) = tanf and F(z) = flotanﬁde——flotan9d6 so by FTC1, F'(z) = —f(z) = —tanzx.

du 1 dh _ dhdu
13. Letw = —. Then — = ——. Also
etu T en dz x2’ 50 ‘dr  dudz’ 50

d [Y® du arctan(l/x)

u
K (z) arctantdt = a / arctantdt - % = arctanu — =
2 x

T dz 2 du dz 2
du dh  dhdu
. Letu = z°. — = 2z. Als 3
14. Let w = z°. Then e 2z. Also, — Jo = duds )
2
d T d u
h’(x):a/ \/1+r3dr:@/ \/1+r3dr~3—1—;:\/1+u3(2m):2x\/1+(m2)3:2x\/1+:c6.
0 0
du 1 dy _ dydu
15. Let u = Then — = A
et u = /z. Then W Iso, 2 = duds *°
,_d ‘/Ecostdt_i/ costdt‘d_u_cosu. 1 _cosy/x 1 cosyx
Y=z J, t Tdu f; 0t de =~ u 2z VT 2z @ 2z
16. Let u = cos . Thenj—z: sinz. Also, % Zz ZZ
y':d%3 A (t +sint) dt d/ t+smt)dt —
= (u+sinu) - (—sinz) = —sinz [cos x + sin(cos )]
dw dy _ dydw
. =1-3z. — = —3. Also.
17. Letw = 1 — 3. Then e 3. Also 4~ dw dz’ )
gt W d W dw
Vo) o 1ve ™ dw ), T+ a2 dx
w 3 3 1— 3
__49 _u_du.d_w:__w_(_g):j(_éig
dw J; 1+u? dzx 1+ w? 1+ (1-32)
_ du @ dy du
18. Let u = €”. Then i Also, de — duds
Y ——/ sin’ t dt = / sin tdt-Z—Z:—%/o sin%dt-%=—sin3ulez=—e’sin3(ez).
3 673 6 6
5, _ |z _3__(—1) _729—1__?1(&
19./_1zdm—[6]_1—6 ==

20. [°,6de = [62]°, = 6[5 — (—2)] = 6(7) = 42

2

21.

-

[34z +3)de = [42® +3z]; = (2-82+3-8) — (2-2° +3-2) =152 - 14 = 138

2 [(1+3y-v)dy=[y+3v" - 54", = (4+§-16-369) - (0 =%

7. fl 4/5 4 [%mg/s]::%-Oz

w

©olo

8
U [P Yade = [P Pde = [304°]) = V0 1) = 524 - )= §06 -1 = §15) = §

23 2, =312 3 [17? 1 7
— = = _ = — | = :—1 -—]_ = -
[ [feass[S] = 5[a] = (1) =5

25.

o
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26. f; 275 dz does not exist because the function f(x) = > has an infinite discontinuity at z = 0; that is, f is

discontinuous on the interval [—2, 3].

5

2 . N 2 e L A,

21. / —5 dz does not exist because the function f(x) = — has an infinite discontinuity at z = 0; that is, f is
_5 T x

discontinuous on the interval [—5, 5].

N
(-]

s ff"cos@dt‘): [sin@]i’r =sin2r —sint=0-0=0

2. [Tz(2+2%)dz = [[(2x +2%)de = [2? + L27)) = (4+ 1) — (0+0) = 156

4 4 4 /2 4
30./ —d:c—/ m—l/zdmz{—} [Qxl/ﬂ —2Va-2y/1=4-2=2
1 \/E J1 1

31. foﬁ/4sec2tdt: [tant]g/4 =tanf —tan0=1-0=1

1
32 fol B+zyz)dr = ji)l <3+z3/2> dz = [3m+ %xs/zh =[(3+2)-0]=4¥
33. f:" csc? 0 df does not exist because the function f(6) = csc? 0 has infinite discontinuities at @ = 7 and 8 = 2n;
that is, f is discontinuous on the interval [r, 27].

34. f”/ﬁ csc 6 cot 0 dfl does not exist because the function f(6) = csc 6 cot 8 has an infinite discontinuity at § = 0;

that is, f is discontinuous on the interval [0, 6}

9 9
35, / —dm——/ idzzé[mu@ =1n9-In1)=21m9-0=1n9">=1In3
1 1

10° 7" 10 1 9
%. [ 10°de = A S
/0 0" dz {mlo}o 10  Inl10  Inl0

[

V3/2 6 V/3/2 1 . a2 N
37. /1/2 — dt:6/1 dt=6[s1n t]l/z 6[sm 1( / ) — sin 1(%)]

[y

by 1 11 _ _ .
38./O mdt:él/o —1+t2dt=4[tan 1t}0=4(1:a.n 11— tan 1O):4(Z—O)=7r

1 1 .
3. [C e*tdu= [e"“] = e — e’ =e%—1 [orstart with e**! = e¥e!]

4 2 2 _ 2
40. / + du = / (4u_3 + u_l)du = iu_2 +Inju|l| = =2 +Ilnu
1 'LL 1 -2 1 u2

1
=(-3+In2) —(-2+Inl) =2 +m2

1

! f(ff(ﬂf)dw = Jo e'de+ [P20do = [La®]) + [12°]0 = (L —0) + (2 - 1) = 107

-

2 [ f(z)de = fi)w:cdac+f07rsinxdw: [%xz](iﬂ — [cosz]j = (0— "7) — (cosm — cos0)

2

us 7r2
- (-1-1)=2-Z%

43. From the graph, it appears that the area is about 60. The actual area is

27
2T V3 dy = {%x“/SJO =2 .81—0= 243 _ 60.75. This is 2 of the

area of the viewing rectangle.
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44. From the graph, it appears that the area is about % The actual area is

6 —~376 6
_4 T -1 1 1 215
/1 v * {'3}1 {Sms]l 3’216+3 648 e

45. It appears that the area under the graph is about % of the area of the
viewing rectangle, or about %71' = 2.1. The actual area is

Jy sinzdz = [—cosz]y = (—cosm) — (—cos0) = —(—1) +1=2.

46. Splitting up the region as shown, we estimate that the area under the graph

is 5 + 1(3- ) ~ 1.8. The actual area is

fo"/s sec’ z dx = [tan a:]g/?’ =v3-0=+3=1.73.

0

48. f:;:l/Q sinzdz = [— cosa:]i’/"/l2 =0+ %—2—- =2

3z ,. 2 0,2 3z .2 2z .2 3z 2
u—1 u®—1 u‘—1 u® —1 / u“—1
. = = —d du = — d’U,+ du =
4. 9(a) /zz o [muz-f—l “+/0 w1 ™ /0 w1 o w1

, (2z)2 -1 d Bx) -1 d 4z? — 1 92 — 1
— = — -2 &y -2 =_92. .
9@ =71 @D T GaE i 2z 53%) 4 11 922 + 1

50 ()_/f2 1 dt_/l dt +/I2 dt __/’m dt +/z2 dt
T e VR B Jme 28 V2E 8 . Vere L Vorg
@)=

g T V2 ftantz dx

3 23 .
51. y:f;;\/isintdt:f;;\/isintdt—}—ff Visintdt = ffl‘/;\/fsintdt+fl Visintdt =

d sec? ¢ 2z

1 2
L () =- +
V2 + x8 d.’E( ) V2 +tantz V2428

(tanz) +

Y =~ YA VE) o (VE) b sin(e?) L (o) = ~ S5 0 sin ) (02°)

= 3z7/? sin(ms) — M

23z
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52. y—fcz cos(u2) du = c;r”ccos(uz)du— Cosmcos(u2)du =

0S T
y' = cos(25z7) - %(535) — cos(cos’ z) - dix(cos z) = cos(25z°) - 5 — cos(cos® z) - (—sinx)

= 5cos(252°) + sinz cos(cos” z)

5. F /ft)dt = F'(z) =

since f(t)

o= [ | /“”—““}

2)4 / 8 2./1
F'() = f(a) = AT di($2) A P ——:—”’ 0 F"(2) = V11 28 = V25T,
z z T
54. For the curve to be concave upward, we must have y'’ > 0. y = 1 d = y = —
: pwarc. VoRv= ) 1xt+e 1+ +a?
"= ——-mi)z For this expression to be positive, we must have (1 + 2z) < 0. since (1 + z + :v2)2 > 0 for
(14 z+z?)

allz. (1+2x) <0 < 2 < —3. Thus, the curve is concave upward on (—oo, —3).

85. By FTC2, [\ f'(z)dz = f(4) — f(1),5017 = f(4) =12 = f(4) =17+12=29.

56. (a) erf(z) = % / eCdt = / et dt = -\éj erf(z). By Property 5 of definite integrals in
T Jo 0

Section 5.2, fob et dt = Iy et dt + fb et dt. so
b b a
/ eV dt = / e dt — / et dt = \/_ rf(b) — £ erf(a) = 1 /7 [erf(b) — erf(a)).
a 0 0

b)y= e’ erf(z) =

y = 2ze® erf(z) + e’ erf/(z) = 2zy + €* - —\3—7_;6_:”2 [by FTC1] = 2zy + 2//7.
57. (a) The Fresnel function S(z) = [ sin(Ft°) dt has local maximum values where 0 = S'(z) = sin(Zz?) and S’

changes from positive to negative. For z > 0, this happens when %xz = (2n — 1)m [odd multiples of 7] <
z? =2(2n — 1) & =z =+/4n — 2, n any positive integer. For z < 0. S’ changes from positive to negative
where 3¢ = 2n [even multiplesof 7] & z? =4n ¢ = —2/n. 5 does not change sign at
z=0.

(b) S is concave upward on those intervals where S"(z) > 0. Differentiating our expression for S (z), we get
8" (x) = cos(§2?)(25z) = wz cos(32?). Forz > 0. 5" (z) > 0 where cos(22%) >0 & 0< I I <z
or(2n—3)r < Iz’ < (2n+ L)mnanyinteger & O<z<loryin—1<z< \/W.nany
positive integer. For z < 0.5"(z) > 0 where cos(32%) <0 & (2n—3)m < Z2° < (2n — L)m nany
integer < 4n-3<z’<4n-1 & ViIn-3<|z|<in—-1 = \/anT<—a:<\/m
= —vA4n —3 > z > —+/4n — 1. so the intervals of upward concavity for z < 0 are
(=v4n'—1,—+/4n =3, n any positive integer. To summarize: S is concave upward on the intervals (0,1),
(~v3.-1). (VB,V5). (~v7.~VB). (VZ.3).....

(c) In Maple, we use plot ({int (sin(Pi*t*2/2),t=0..x),0.2},x=0..2) ;. Note that Maple
recognizes the Fresnel function, calling it FresnelS (x). In Mathematica, we use
Plot [{Integrate [Sin[Pi*t*2/2],{t,0,x}],0.2},{x,0,2}]. InDerive, we load the utility file
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FRESNEL and plot FRESNEL_SIN (x) . From the graphs, we see that [, sin(5t*) dt = 0.2 at z ~ 0.74.
075 025

% ] V

58. (a) In Maple. we should start by setting

si=Integrate[Sin[t]/t,{t,0,x}]. Note that both systems

si:=int(sin(t)/t,t=0..x): In Mathematica, the command is {
47

47
recognize this function: Maple calls it Si (x) and Mathematica calls it J

SinIntegral [x]. In Maple. the command to generate the graph is

-2

plot(si,x=-4*Pi..4*Pi);. In Mathematica. itis 2
Plot[si, {x,-4*Pi,4*Pi}]. In Derive, we load the utility file EXP INT and plot SI (x).

(b) Si(x) has local maximum values where Si’(z) changes from positive to negative, passing through 0. From the

smt sinz .
Fundamental Theorem we know that Si’( / = , so we must have sinxz = 0 fora
T

maximum, and for z > 0 we must have x = (2n — 1)7, n any positive integer, for Si’ to be changing from
positive to negative at z. For z < 0, we must have z = 2n7, n any positive integer, for a maximum, since the
denominator of Si’() is negative for z < 0. Thus, the local maxima occur at

=, —2m, 37, —4mw, 5r, —67,. ...

() To find the first inflection point, we solve Si”(x) = st _ szw = 0. We can see from the graph that the first
x z

inflection point lies somewhere between z = 3 and z = 5. Using a root finder gives the value x ~ 4.4934. To
find the y-coordinate of the inflection point, we evaluate Si(4.4934) ~ 1.6556. So the coordinates of the first
inflection point to the right of the origin are about (4.4934,1.6556). Alternatively, we could graph S"(z) and

estimate the first positive z-value at which it changes sign.

(d) It seems from the graph that the function has horizontal asymptotes at y ~ 1.5, with ]H:? Si(z) ~ £1.5

Tr— T 00

respectively. Using the limit command. we get lim Si(z) = Z. Since Si(z) is an odd function,

T —00

lim Si(z) = —Z. So Si(x) has the horizontal asymptotes y = +7.

xr— —00
(e) We use the £solve command in Maple (or FindRoot in Mathematica) to find that the solution is z = 1.1.
Or, as in Exercise 57(c). we graph y = Si(z) and y = 1 on the same screen to see where they intersect.

59. (a) By FTCl. ¢'(z) = f(z). Sog'(z) = f(z) =0atz = 1,3,5,7.and 9. g has local maxima atz = 1 and 5
(since f = ¢’ changes from positive to negative there) and local minima at z = 3 and 7. There is no local

maximum or minimum at x = 9, since f is not defined for z > 9.
fs"’fdt{ < \f;fdti < ‘f;’fdtl.
So g(1) = \fol fdt\. g(5) = [ fdt = g(1) — \ff fdtl + ‘f; fdt\, and

g(9) = f(? fdt=g(5) — ‘f; fdt\ + ’f;) fdt‘. Thus, g(1) < g(5) < g(9). and so the absolute maximum of

(b) We can see from the graph that ‘fol fdt‘ < ‘fls f dt\ <

g(x) occurs at z = 9.



60.

61.

62.

63.

64.
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(c) g is concave downward on those intervals where g" < 0. But @

g (z) = f(x).so g"(z) = f'(z). which is negative on I /\ /
6 8
(approximately) (3.2). (4,6) and (8,9). So g is concave downward

2 ? 0 \
on these intervals. -1

-2

(a) By FTCl, ¢'(z) = f(z). Sog'(z) = f(z) = 0atz = 2. 4.6. 8, and 10. g has local maxima at z = 2 and 6
(since f = g’ changes from positive to negative there) and local minima at z = 4 and 8. There is no local

maximum or minimum at z = 10, since f is not defined for z > 10.
(b) We can see from the graph that )f; fdt{ > ’f; fdt' > ‘fffdt' > |f68 fdt’ > ‘fslo fdt‘.
So g(2) = lf:fdt‘. (6) = Jy fdt = g(2) - | [} £ | + |7 f dt] and
g(10) = O O fdt = g(6) — ’fa fdt’ l fdt.. Thus. g(2) > g(6) > g(10). and so the absolute maximum

of g(x) occurs at x = 2.

(c) g is concave downward on those intervals where g’" < 0. But )

g'(z) = f(z).s0 ¢"(z) = f'(x), which is negative on (1, 3). (5, 7)

y

0.5
and (9, 10). So g is concave downward on these intervals.

0] 2 4 6 8 10x

23210 2 2
‘/Edw_{ 3 JO_§_O_§

. 1< 1 2 /_n>
lim = — 2+, =
n—oo 7N n n n n— o0

Suppose h < 0. Since f is continuous on [z + h. z]. the Extreme Value Theorem says that there are numbers u and
vin [z + h, z] such that f(u) = m and f(v) = M. where m and M are the absolute minimum and maximum

values of f on [z + h, z]. By Property 8 of integrals. m(—h) < f(t)dt < M(—h); that is,

w+h

fu)(—=h) < - j”h t)dt < f(v)(—h). Since —h > 0. we can divide this inequality by —h:

xz+h x
flu) < E/ ' f(t)dt < f(v). By Equation 2. w — %/ - f(¢t) dt for h # 0, and hence

flu) < w < f(v). which is Equation 3 in the case where h < 0.
h(z) a T
dix /g(z) ft)dt = d_dm [ o f(t)dt+ ah( )f(t) dt} (where a is in the domain of f)
d 9(=) a4 [ @
== {— [ a2 | [ s dtJ = ~f(9@) ¢’ (@) + [ (h(z)) ¥ (z)
= f(h@)) k' (z) - f(g9(z)) g’ (x)
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65. (a) Let f(z) = vz = f'(z)=1/(2y/x)>0forz >0 = fisincreasingon (0,00). If z > 0. then
23 > 0,501 +2® > 1 and since f is increasing, this means that f(l + m3) >f(1) = V1+2z3>1for
>0 Nextletg(t)=t>—t = g'(t)=2t—1 = g'(t)>0whent > 1. Thus. g is increasing on
(1,00). And since g(1) = 0, g(t) > 0 whent > 1. Now let t = v/1 + 23, where z > 0. /1 + 2 > 1 (from
above) = t>1 = g(t)>0 = (1+2°)—+/1+23>0forz > 0. Therefore,
1<V1I+23<1+42%forz>0.

(b) From part (a) and Property 7: fol ldz < fol VI+z3dz < fol (1+2%)dz &

2]y < [y VI+a3da < [x+ 12, & 1< [JVi+aide<1+1=1.25

66. (a) If z < 0. then g(x fo :fOdet:O, (b)
If0 <z <1 theng(z fo = [y tdt = [3t*], = 52°. 1y¢ P
If1 <z <2, then
:fOx fO dt+f1 + +
0
+f1 2 t)dt = ()+[2t 12)7 : 2
:§+(2$——(ll)—(2—-§)—2$—5$ — 1. y
Ifz > 2 then g(z) = [ f(t)dt =g(2)+ [, 0dt =1+0=1.So It g
0 if x <0
1,.2 : " :
o(z) = 5T if0<z<1 0 ] 5 x
2t —32° -1 if 1<z <2
1 ifz>2

(c) f is not differentiable at its corners at z = 0, 1. and 2. f is differentiable on (—o0, 0). (0, 1), (1,2) and (2, 00).
g is differentiable on (—o0, 00).

67. Using FTC1, we differentiate both sides of 6 + / £ dt = 2+/x to get @) _ o1 o f(z) =232
P 2 z? 2z

To find a. we substitute z = a in the original equation to obtain 6 + / —ft(Tt) dt=2V/a = 6+0=2ya =
3=ya = a=09

8. B=34 = [le®dz=3[Je"dz = ["]p=3["]f = € -1=3("-1) =
e =3e"—-2 = b=In(3e*—-2)

69. (a) Let F'(t) = fo s) ds. Then, by FTCI, F’(t) = f(t) = rate of depreciation, so F'(t) represents the loss in
value over the interval [0, ¢].

1 ¢ A+ F(t) . . . .
(b) C(t) = n A+ f(s)ds| = — represents the average expenditure per unit of ¢ during the interval
0

[0, t]. assuming that there has been only one overhaul during that time period. The company wants to minimize
average expenditure.

©) C(t) = %[A%—/tf(s)ds} Using FTC1, we have C'(t) = 7%2 {A—F /t f(s) ds] + }f(t).
0 0 '

Ct)=0 = tf(t):A+/0tf(s)ds = f(t):ﬂAJr/otf(s)ds]ZC(t).
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70. (a) C(t) = % /t [f(s) + g(s)] ds. Using FTC1 and the Product Rule. we have
0
€0 = 11O +90) - [ 1f()+ (o) ds. S C'(0) =

L@+ - [ 1@+ alds =0 > [0+~ 1 [ U +alds=0 =
) +90] - C() =0 = Clt) = F(6) +9(0).

VoV 1% VL' vV, Vo,

' = [ (= --Fs)ds=|—s— — Zt— —¢2
(b) For 0 <t < 30, we have D(¢) /0<15 4509>ds {153 9003 =15 3500
\%4 14 2 _ 2 2 _

(t—30)> =0 = t=30.So the length of time T"is 30 months.

1 |4 |4 V 1V V 2 V. s ‘
= — —_— = — e d —|—8 —
(©) C(t) t/ <15 150° 1 12.000° ) o= t{lSS 900" *38700° |,
WV, V., V .\ V Vv Vo,
iy, 2 t
t<15t 00" T 38.700 ) *

—t
15 900 38.700

N 1% 11 B
0= ~560 " 9350° ~ V" T9350¢ ~gs L2
vV v v 1%
5) = — — ——(21. ~ 0. LC(0) = = ~0. .and
C(21.5) = 1= ~ 505 (215) + 3705 (21:5)° ~ 0.05472V. C(0) = 7z ~ 0.06667V. an
C(30) = v_ L(30) + 4 (30)? = 0.05659V . so the absolute minimum is C'(21.5) &~ 0.05472V
15~ 900 38.700 ‘ - ‘ ' '
(d) As in part (c), we have C(t) = v Lt + l—-tQ so C(t) = f(t) + g(t)
pARAC), 15 900" T 38700 ° - gy
vV v Vv o, V Vv V. _
A AT AN S A y=f(H)+glt)
15 900' T 38700" 15 450 T 129000 15N \
1 1 11 7
e - ) =t — - — =
(12.900 38.700) t<450 900) < y=cm
1/900 43 . . 0 215 30 ¢

———— = — = 21.5. the val i : :
2/38 700~ 2 5. This is the value of ¢ that we obtained as the critical

number of C'in part (c), so we have verified the result of (a) in this case.

5.4 Indefinite Integrals and the Net Change Theorem

d d 1/2 ~1/2 x
= 2 - = 2 =1(2 . =
L V140 = = [@+ 1)+ 0] = 42+ 1) 2 = ——
d . . .
2. E[azsmmﬁ-cosx—i—C] =zcosz + (sinz)-1—sinz = rcosz
3 d z Lol = 1 Va2 —a? —z(— /\/a2—x2 1 (a®—2?%) +2? B 1
" dz | a2v/a? — 22  a? a? — x2? T a2 (a2 — z2)/? - (a2 — 22)?
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i 2 _\/a:2+a2+C _ 1d[Va?+a®] _ z(z/VaP+a®) —VaT+a® 1
dz a?z T a?dz T T
? — (2 +a%) 1
a2z? /22 + a2 N T a2

—3/4+1 2174
5, /$_3/4dx:%+0— i +C =410

a2x?

6 .S/de— 23 dx = i/3+O 3.8 40
' B " 43 vt

$4 2

1/Xﬁ+ﬁm+ndw=2:+&5+x+c 1zt +32% +2+C

2 6
8./m(1+2:c4)da::/(:z:+2w5)dx:%—+2%+C iz —|—1x +C

2 3 4
9. /(1—t)(2+t2)dt:/(2—2t+t2 )dt—2t—2%+%—tz+0—2t—t +id -1+
10 / P dx—x—S-l-x—i-t “lz+0C
3 2+1 = 3 an T
- 9 23/ 22
11./(2—\/5) dz:/(4—4\/5+x)dw=4m—4%+ 5 TC=4-3% 3/2+2a: +C

12. [ (3e* + sec? u) du = 3e* + tanu + C

sm T sinx 1 sin x
13. = > dxr = . dx = [ secx tanzdx =secx + C
1-sin’z :n cos’x COST COST

14./Sl_nzmdm:/Mdm:/?cosxdm:2smz+c

sinz sinz
15. [zy/zde = [23/dz = 2272 + C. 16. [(cosz — 2sinz)dx = sinz 4+ 2cosx + C.
The members of the family in the figure The members of the family in the figure
correspond to C' = 5, 3, 0, —2. and —4. correspond to C = 5. 3,0, —2. and —4.
) 8
12 530/~

=" )

17. [2(62° — 4z +5)dz = [6- 12° —4- L2® + 5z]) = [20° — 227 + bz, = (16 — 8+ 10) — 0 = 18

18. f1(1+2m74m Ydz = [z +2- z° A4~%m4]?:[x+:c2Am4]?
=(3+9-8)—(1+1—-1)=-69—1=—70
19. f?l(Zw—e"’) dz = [z? —e‘”]o_l =0-1)—(1-e')=-2+1/e

20. fEQ(US —u3+u2)du: [%uﬁ — —u + 1u3]02 =0- (3—2 —4 - %) = —4
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21, [2 (Bu+1)2du = [2 (9> +6u+1) du=[9- Ju +6- tu? +u]’, = [3u +3u? + 4]’
=(24+1242)—(-24+12-2) =38 — (—14) =52
22, f;(2v+5)(3v-1)dv :f04(6v2+13v—5)dv: [6- v +13- 3o —521] [2v3+1—23v2—5v]3
= (128 + 104 — 20) — 0 = 212

4
BIVEU+d = [+ 0= 307 1 200 = (B4 -G+ =+ 8=

24.

P

9
Jy V=[] VEE R dr = [V2- 3602 =3-2.27-0=18V2
- 1.4 1 -2 - 4 1 - 1 63
25./ (4y+ )dy—[ 1Y +2-—_—2y =y —— :(1—1)_(16*1):AT

2
2 -2 Yy 2

+ 5y” . - 2 1 2
26./ Y 7 Y dy —/ (y 2 +5y")dy = [~y 1+5-%y5]1: {—;4—3/5] =(-3+32)—(-1+1)=%
J1 1 1

1
2 [ a(YE+ F) do= [} 42 de = [270 4 420 = (24 8) ~0=3
28. [°(2e" +4cosz)dr = [2¢° +4sinz]) = (2¢° +4sin5) — (2¢° +4sin0) = 2¢° + 4sin 5 — 2 ~ 290.99
29, 1'14 S/xdm:\/5[1413_1/2(11':\/3[2\/5]‘11:\/5(22—2-1):2\/5

9 9
3z —2 1/2 —1/2 2 3/2 1/21° 3/2 1/2]°
30./1 N dw:/1 (3c"* ~ 207 do = [3- 32% — 22| = [22°° — o ],

=(54—12) — (2—4) = 44
31. [, (4sin6 —3cosf) df = [~4cosh — 3sinb); = (4 —0) — (-4 —-0) =8

32 [”/ secHtanfdf = [sectﬂ =secT —secT =2-+/2

™41 4 cos? 6 KAV cos® 0 /4
33. ——df = —  — = 2
./0 cos? 6 /0 (cos2 0 + cos? 0) 4 /0 (sec”0 +1) df

ot =(tanT+T) —(0+0) =141

/3 o : /3
34'/ sin § + sin @ tan® 0d9=/ sm@(l—}—tan 0) d0 / % sin f sec? GdG:/ sin 6 do
0 0 0

sec? 6 T sec2f sec2 0

= [tan® + 0]]

=[ cosﬂr/s_—E—(

64 64 1/3 64 64
14+ ¢z 1 T _ /s
35. dz = —_— dr = 1/2 4 (1/3) = (1/2)y 4. -1/2  _-1/6
/ Ve T (M* 1/2) o /1(”” o Jar= ), e

= o2 4 g0 = (164 28— (24 9) =144 22— 2

36. _f()l(1+x2)3d:c:f01(1+312+3x4+x6)dg;: [$+333+:—531‘5+%:r7]é: (1+1+23+1)—0=2
e 2 e
1 1 e
/mdx:/ <$+1+~)da?:[%x2+m+ln|m|]l
1 z 1 z

:(%e")—ke—%—lne)~(%+1+1n1):%ez+ -1

-9 1\2 9 0
38. — = = [1z2
/1 (\/a—:+ﬁ> dz A <x+2+ )drc [3z +2:c+ln|:v|]4

=8 +18+In9—(8+8+1In4) =2 +1n?

37.

~
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39.

40.

a.

42.

44
45,

46.

4].

48.

49.

51.

00  CHAPTERS5 INTEGRALS
2 0
[ (@ =2z))dz = [°|[x — 2(—z)]dz + f02[x —2(z)]dz = [°, 3z dz + foz(—:z:) dr = 3[%:52](11 - [%ﬁ]i
=3(0-3)-(2-0=-I=-35
f3”/2 sinz| de = [ sinzdz + f%/ —sinz)dz = [~ cosz]] + [cos 2]/
== (40— (-D]=2+1=3
The graph shows that y = z + 2> — z* has x-intercepts at z = 0 and at 12
T = a ~ 1.32. So the area of the region that lies under the curve and
above the z-axis is
fo (z+ 2% - 2*) dz = [§2® + §2° — 12°]
:(%a2+%a3_%a5)_0 —0.2 \JLS
~ 0.84 -02
The graph shows that y = 2z + 3z* — 22° has z-intercepts at = 0 and 3.2
atxz = a =~ 1.37. So the area of the region that lies under the curve and
above the z-axis is
Iy (22 + 32" — 22°) da = [2® + 22° — 247)
_(.2,3.5_ 2.7
=(a®+%a®-2a") -0 -02 U]'S
~ 2.18 -05

A= =)y = [ - 0= (-3 -0 =4

y=Yr = :c:y4.soA:f01y4dy: [%ys]; =1

It w’(t) is the rate of change of weight in pounds per year, then w(t) represents the weight in pounds of the child at
age t. We know from the Net Change Theorem that f;o w'(t) dt = w(10) — w(5). so the integral represents the
increase in the child’s weight (in pounds) between the ages of 5 and 10.

ff I(t)dt = fab Q' (t) dt = Q(b) — Q(a) by the Net Change Theorem, so it represents the change in the charge Q
from timet =atot =b.

Since 7(t) is the rate at which oil leaks. we can write r(t) = —V"(t), where V/(t) is the volume of oil at time ¢.
[Note that the minus sign is needed because V is decreasing, so V' (t) is negative. but r(t) is positive.] Thus. by the
Net Change Theorem. [*° r(t) dt = — [}** V'(t) dt = — [V (120) — V(0)] = V(0) — V(120). which is the
number of gallons of oil that leaked from the tank in the first two hours (120 minutes).

By the Net Change Theorem. fo t)dt = n(15) — n(0) = n(15) — 100 represents the increase in the bee
population in 15 weeks. So 100 + f n'(t) dt = n(15) represents the total bee population after 15 weeks.

By the Net Change Theorem. f?&o R'(z) dz = R(5000) — R(1000), so it represents the increase in revenue when

production is increased from 1000 units to 5000 units.

. The slope of the trail is the rate of change of the elevation E, so f(z) = E’(z). By the Net Change Theorem.

f3 flx)dz = fs z)dz = E(5) — E(3) is the change in the elevation E between x = 3 miles and z = 5 miles
from the start of the lrall.

In general. the unit of measurement for fb f(x) dz is the product of the unit for f(z) and the unit for z. Since

100

f(x) is measured in newtons and x is measured in meters, the units for f f(x) dx are newton-meters.

(A newton-meter is abbreviated N-m and is called a joule.)
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52. The units for a(z) are pounds per foot and the units for z are feet. so the units for da/dz are pounds per foot per
foot, denoted (Ib/ft)/ft. The unit of measurement for _[2 ) dz is the product of pounds per foot and feet; that is,
pounds.

53. (a) displacement = .['03(3t —5)dt = [3t* - 5t12 =2 _15= ~3m
(b) distance traveled = [(i” |3t — 5| dt = 5/3(5 —3t)dt + f53/3(3t —5)dt

:[5t—%t2]z/3+[ t2—5t}5/3 2275_%.2_;+%_15_(§.E_2§):%m

54. (a) displacement = [ (12 — 2t — 8) dt = [3t° —° — 8t] =(72-36-48) - (1 -1-8) =—m
(b) distance traveled = [} |t* — 2t — 8| dt = I )t +2)|dt
= [H(~+2t+8)dt+ [/ (t2 Cot—8)dt = [~ 163+ £+ 81" + [162 — 12— 81]
= (—% 4 16+32) — (~1+1+8)+(72-36-48) - (§ ~16-32) = Fm
85, () v'(t) =at) =t+4 = v(t)=12+4+C = v(0)=C=5 = v(t)=3t"+4t+5m/s
(b) distance traveled = -010 [v(t)] dt = 010 |3t% + 4t + 5| dt = 010(%t2 +4t +5) dt
= [1¢% 4+ 262 4 5¢]) = 20 4 200 + 50 = 4163 m
56. 2) v'(t) = a(t) =2t+3 = o(t)=t2+3t+C = v(0)=C=-4 = v(t)=t"+3t-4
(b) distance traveled = [ |t* + 3t — 4| dt = [ |(t +4)(t — 1) dt
= [1(~t* =3t +4)dt+ [ (£ +3t —4) dt
= [—16% — 362 4 4t]) + [L6° + 3¢% — 4t
(-3 + 04 F 1) - (G3-9=Fm
57. Sincem’(m)=,0(ac),m:j;)4 ydo = [(9+2yz)dz = [91+4x3/2]4 36+ 32 —0=120 =462 kg.
58. By the Net Change Theorem. the amount of water that flows from the tank is
S0ty dt = [1°(200 — 4t) dt = [200t — 2¢*] )" = (2000 — 200) — 0 = 1800 liters.

59. Let s be the position of the car. We know from Equation 2 that s(100) — s(0) = 100 v(t) dt. We use the Midpoint

Rule for 0 < ¢t < 100 with n = 5. Note that the length of each of the five time mtervals is

. _20_ —
20 seconds = 3555 hour = 180 hour. So the distance traveled is

J3%%u(t) dt = 125 [v(10) + v(30) + v(50) + v(70) + v(90)]
= 115(38 + 58 + 51 + 53 + 47)

= 24 ~ 1.4 miles

60. (a) By the Net Change Theorem, the total amount spewed into the atmosphere is
Q(6) — Q(0) = ] r(t) dt = Q(6) since Q(0) = 0. The rate r(t) is positive, so Q is an increasing function.
b—a 6-0

= —=1.
n 6

Thus. an upper estimate for Q(6) is Re and a lower estimate for Q(6) is Le. At =

&
I
Mo

r(t:;) At = 10 + 24 + 36 + 46 + 54 + 60 = 230 tonnes.

Il
b

~
[
I

.MO‘-

Il
A

r(ti—1) At = Rg + 7(0) — r(6) = 230 + 2 — 60 = 172 tonnes.
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b—a 6—0
=5 = 2.

Q(6) = Mz = 2[r(1) 4+ r(3) + r(5)] = 2(10 + 36 + 54) = 2(100) = 200 tonnes.
61. From the Net Change Theorem. the increase in cost if the production level is raised from 2000 yards to 4000 yards
is C(4000) — C(2000) = [ ¢(z) da.

2000

(b) At =

4000 4000
/ C'(z)dz = / (3 = 0.01z + 0.0000062°) dz
2000 2

000

4000

2000 = 60.000 — 2,000 = $58.000

= [3z - 0.0052” + 0.000002z°]
62. By the Net Change Theorem. the amount of water after four days is
25.000 + ' r(t) dt ~ 25.000 + My
= 25.000 + 42 [r(0.5) + r(1.5) + 7(2.5) + r(3.5)]
~ 25.000 + [1500 + 1770 + 740 + (—690)] = 28.320 liters
63. (a) We can find the area between the Lorenz curve and the line y = x by subtracting the area under y = L(z) from
the area under y = z. Thus,

. 1
area between Lorenz curve and line y = x fo [t—L
area under line y = z fol zdz

oz L@)]dz [} [z L(z)]dz e Lia) da
—hbo e Lk _2/0 o - L(z)]d

(b) L(z) = 32>+ Lz = L(50%) = L(3)=2+% = 12 = 0.39583, so the bottom 50% of the
households receive at most about 40% of the income. Using the result in part (a),

coefficient of inequality =

coefficient of inequality = 2f01 [z — L(z)]dz = 2f0 (z— Z2° — 5z)dz

—2f0(—m——:c)dm—2f 2(z—2?)dz

=t -2, =3 - =23 =%

64. (a) From Exercise 4.1.72(a), v(t) = 0.00146t> — 0.11553t2 + 24.98169t — 21.26872.

(b) h(125) — h(0) = [,*° v(t) dt = [0.000365¢* — 0.03851¢> + 12.490845¢t> — 21.26872¢

A ]125

~ 206.407 ft

5.5 The Substitution Rule

1. Letu = 3z. Then du = 3dz, so dz = 1du. Thus,
Jcos3zdr = [cosu(jdu) =% [cosudu = %sinu+C = %sin3z + C. Dont forget that it is often very

easy to check an indefinite integration by differentiating your answer. In this case,

di (3sin3z + C) = L(cos 3z) - 3 = cos 3z, the desired resul.

z

2 Letu = 4 + z2. Then du = 2z dzx and zdx = %du. SO
Jx(4+2° )10 dz = [u'%(3du) = 1. Lutt+C= 75 (4 +a%)

3. Letw = 2% + 1. Then du = 3z%dz and 22 dz = % du, so

11

+C.

3/2

1 .
[V T ldz = [ u(Ldu) = g%ﬁ+0:%<§u3/2+0:%(m3+1)3/2+0.
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1
. Letu = /z. Then du = —1—da: and — dz = 2du, so

2z vz
sin /T .
dr = [ sinu(2du) = 2(—cosu) + C = —2cos vz +C.
NG
. Letu = 1 + 2. Then du = 2dz and dz = 1 du, so
/—4—d —4/ }(du) = 2:+C —i+C———1—+C
1+2032 77 WemEg Ty T A+2z)z

. Letu = sin 0. Then du = cos8df, so [ "% cosfdf = [e“du=e"+C = en? 4 C.
. Letu = 2 + 3. Then du = 2z dz. so [ 22(z® +3)*dz = [u'du=tv® +C = ;(z* +3)° + C.

. Letu = 2® 4+ 5. Then du = 3z*dz and z°dzx = § du. so

J&*(@® +5)"dz = [u’ (5du) =5 -5 u1°+C L@ +5)° +C.

. Letu = 3¢ — 2. Then du = 3dz and dz = 3 du. s0

[(32 -2 do = [ (3du) = § - ot +C = (32 -2 +C.

Letw = 2 — z. Then du = —dz and dz = —du. so
[(2-2)fde = [ul(—du) = —3u"+C=-3(2 —z)" +C.

Letu = 14 z + 222, Then du = (1 + 4z) dz, so

1+ 4x / —1/2
—_——dzr = = du——-——+C—2\/1+x+2mz+C
1+ z + 2x2 \/_ 1/2

Letu = 22 + 1. Thendu = 2z dz and zdz = %du, )

% gee [ td) =t L io=Lioo L
/(m2+1)2da:—/u (3du) = 3 u+C’—2u+C—2(m2+1)+C.

Letu = 5 — 3z. Then du = —3dz and dz = —3 du, s0

d 1
o :/ﬂ(‘%d“) — —llnfu/+C = ~1In|5 32|+ C.

Letu = 22 + 1. Then du = 2z dz and z dz = %du, SO

1
T 5 du
/wz_’_ldaz:/z—u—:%ln|u|+C=%ln|x2+1|+0:%ln(m2+1)+0 [since z* 4+ 1 > 0]
orln(z? + )Y?2 4+ C =22 +1+C.

Letu=2y+l.Thendu:?dyanddy:%du,so

3 5 3 1 -3
— —dy= [3u%( du) =2 — =———+C.
@i t= [ =5 S 0= g+ ©
Let u = 5t + 4. Then du = 5dt and dt =  du. so

1 2.7 (1 1 1 47 -1 _17 -2
. dt= Lgy) =2 —— = S —
/(5t+4)2-7 /“ (5du) =5 v +C=ggu "+ 0=y 7O

Letu = 4 —t. Thendu = —dt and dt = —du. so
[VE—tdt = [u?(—du) = —2u®? +C = -2(4—t)’*+ C.
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Let u = 2y* — 1. Then du = 8y® dy and y3 dy = 2 du. so
fy3 /2y4—1dy =fu1/2(%du) _ %~§US/Q+C: 1_12(2y4_1)3/2+0.

Let u = mt. Then du = 7dt and dt = L du. so
[sinmtdt = [sinu (£ du) = L(—cosu)+C = —1 cosmt +C.

Let uw = 260. Then du = 2df and df = 1 du, so
J sec26 tan20df = [secutanu (1 du) = 1secu+C = 3sec20 + C.

2
Letu =Inz. Thendu:%—:,so/@w—m)—dm:‘qudu:%usﬁ-C %(lnw) +C.

-1 t -1
. Letu = tan™! z. Then du = dz , SO tan mdx: udu:u_+C:_(an_x)_+0_
1+ 22 2

1+ z2

dt 1
Let u = v/t. Then du = ——= and — dt = 2du. so
ve i Vi -

/CO\S/_;/E dt = [cosu(2du) = 2sinu+ C = 2sin vt + C.

Letu = 1+ z*?. Then du = £2/2dz and vz dz = 2 du. so
[ Vxsin(l + 2*/?) de = [sinu(2du) =2 (~cosu)+C = —2 cos(1 +2%/?) + C.

Let u = sin 6. Then du = cos 8 d. so [ cosf sin®§df = [u®du = %u7+C = %sin79+C’,

Letu = 1 4+ tand. Then du = sec?® 0 df, so
J( +tan6)°sec’0dO = [’ du = tus+ C = (1 +tan6)® + C.

Letu =1+ e Thendu = e dz,s0 [ "1+ e*dx = [ udu=2u*?+C =2(1+e")*/2 4 C.
Or: Letu = /1+e®. Thenu® = 1 + €® and 2udu = € dz. so
JeViterde = [u-2udu=2u®+C=2(1+€")%%+C.

Let u = cost. Then du = —sintdtand sintdt = —du, so
Jetsintdt = [e¥ (—du) = —e* + C = —e*t 4 C.

Letu = 1+ 23. Then du = 32%dz and 22 dz = %du, S0

/13/1+z3dz_/ TP(Gdu) =3 3wt 0= 30+ 1

Let u = az® + 2bz + c. Then du = 2(az + b) dz and (az + b) dz = 2 du, so

(aa:+b dz %du 1 —1/2 1/2
= [ 2===(u du=u"*+C=+ax?+2bx+c+C.
Va2 + 2%z + ¢ Vu 2 f

Letu:lnx‘Thendu:d—;,so /du Inju| +C =In|lnz| + C.

:clnm

ea:

d:
et +1 *

Letu:e“"+1.Thendu:e"‘dm.so/ :/@ =lInlu|+ C =In(e”" +1) + C.
u
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Let u = cot . Then du = — csc? z dz and csc? zdz = —du. so

/@cs&xdm:/ﬁ(—du) = - i

1;’? +C = —%(cotw)s/2 +C.

1 1
Letu = E. Then du = —12 dz and —2da: = ——du. so
T T T T

/——Cos(ﬂ/w) dz = / cosu(—%du) = —%sinuﬁ—c = —%sin% +C.

12

cosx
/cotxdm:/ dz. Let u = sinz. Then du = cosz dz, so
sinx

[cotzdz = [ Ldu=1In|ul+C =Inlsinz|+C.

Let v = cos z. Then du = — sinz dz and sinz dz = —du. so
i " —d _ _
/—lj—l:oz?;dw:/ﬂ—%z—tan Lu+C = —tan *(cosz) + C.

Let u = sec z. Then du = secz tanz dz, so

[sec®z tanzdz = [ sec? z (secx tanz)dr = [u’ du = 24+ C=3sec’z+C.
Letu = z° + 1. Then 2° = u — 1 and du = 3z dz. s0
[ Va3 +1a° de=[¥2*+1-2° 2 2de = [u'/3(u—1)(3 du):%f(u‘l/?’—ulm)du
::_13<%u7/3 3 4/3)+C*%(a:3+1)7/3—%(:c3+1)4/3+6’

Let u = b + cz®™. Then du = (a + 1)cz® dz. so

/m“\/b+cwa+1dz=/ul/2( L o= 1 ) (2 3/2)4—0“——2 (b+cw“+1)3/2+0.

a+1)c (a+1)c 3c(a+1)

Let u = cost. Then du = —sintdt and sintdt = —du. so
[ sint sec?(cost)dt = [sec’ u - (—du) = —tanu+ C = —tan(cost) + C.

Letw = 1 + z2. Then du = 2z dz. so

1+z 1 T 1 Lau _
der = | ——d — — 2 — 1 1
/1+x2 T /1+cc2 x+/1+x2dm tan :c+/ — =tan z+ 5 Inful+C

=tan"'z + 3 In|1 + 27| +C=tan"'z+ 1 In(1+2%) +C [since 1 + 2 > 0].

1
s d
Letu=w2.Thendu=2wdx.so/ =/ 2 v =ltan'u+C = }tan"'(z%) + C.

:c dx
1+ 24 14 u?

. Let u = z + 2. Then du = dz, so

-2
/ 4xw+2da;:/“\4/a_du:/(u3/4_2u~1/4) du:$u7/4—2-§u3/4+c

=4@+2)"" - S@+2*" +C

. Letu=1—-2. Thenz =1 — uand dz = —du, so

z? (1 —u)? 1—2u+u?
A R € k) R A B Sl S —1/2 _ o 1/2 3/2
/ Nier x / Ta (—du) Ta du /(u u’" +u )du

~_(2u1/2_2.2 3/2+2 5/2)+C:—2 r—1_$+%(17:8)3/2_%(1;@5/24_0
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In Exercises 45-48, let f(z) denote the integrand and F(z) its antiderivative (with C' = 0).

3z —1
4. f(z) = EEr———" 1.7

u=32"-2r+1 = du=(6z—2)dz=2(3z— 1)dz, so

/(3:523_962_:1:1%—1) dz =/%<%du> :%/u“ldu —0.75L \\[F/ J .

3 1 _
=——u " +C=-—-—— _ 1 C 1.7
6 (322 — 2z +1)°

Notice that at z = % f changes from negative to positive, and F has a local minimum.

46. f(z):~2m——. u=2"+1 = du=2zdz, so
¢ +1

/ﬁda::/%(%du) :%/u_l/zdu
T
=u?+Cc=\z2+1+C.

Note that at z = 0, f changes from negative to positive and F has a local

minimum.

41. f(z) =sin®z cosz. u =sinz = du=coszdz,so 0.35

[sin®z cosxd:c:fug‘du~ ti0 = isin*z +C [/’ \ F ]

Note that at z = 7, f changes from positive to negative and F' has a local 0 e -
maximum. Also, both f and F' are periodic with period 7, so at z = 0 and "\f / J
atz = 7. f changes from negative to positive and F' has local minima. o =4

48. f(0) =tan’ 0 sec®f. u = tanf = du = sec?6d6. so 2

ftan29sec20d9:fu2du=%u3+C:§tan39+C’ [ \ I F
s positi ; -1

Note that f is positive and F' is increasing. Atz =0, f = 0 and F has a

1.1
horizontal tangent. J

49. Letu =z —1,s0du = dz. Whenz = 0.u = —1; when z = 2, u = 1. Thus, f02($ —1)¥®dx = f_ll udu =0
by Theorem 7(b), since f(u) = u2® is an odd function.
50. Letu = 4+ 3z.s0du = 3dz. Whenz = 0, u = 4; when z = 7, w = 25. Thus,

7 25 3/2725
/ \/4+3:cd:r:/ V(i du) = 1 ke 2(253/2743/2)23(125 8) = 234 _ 96
o f 3/2), 9 9 9

51. Letu = 1 + 223, sodu = 6z% dz. Whenz = 0, v = 1: when z = 1, uw = 3. Thus,

Jo @(1422%)° do = [Pu®(Ldu) = §[3°]d = (3% —1%) = L (720 — 1) = 128 — 182



52.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

SECTION 5.5 THE SUBSTITUTION RULE

Letu = 22, 50 du = 2z dz. When z = 0, u = 0; when z = /7. u = 7. Thus,

Jo z cos(z?) de = [ cosu (3§ du) = 3 l[sinu|] = L(sinm —sin0) = (0 —0) = 0.

. Letu = t/4, 50 du = % dt. Whent = 0, u = 0; when t = m. u = /4. Thus,

" sec?(t/4)dt = [/* sec® u (4du) = 4[tanu "/* _ 4(tan T — tan0) = 4(1 — 0) = 4.
0 0 0 4

Let u = 7t, so du = wdt. Whent = %.u = §i:whent = %,u = 7. Thus,
f1/2csc7rt cotm‘,dt—fw/zcscu cotu (£ du) = %[—cscu]:ﬁ =-1(1-2)=1

f:r,/,?e tan3 0 d0 = 0 by Theorem 7(b), since f(6) = tan® 6 is an odd function.

2
/ (— does not exist since f(z) = has an infinite discontinuity at z = 2.
0

1
2z — 3)? (2z — 3)?

Letu = 1/z,s0 du = —1/z?dz. Whenz = 1. u = 1; when z = 2, u = 5. Thus,

2 el/z 1/2 u uyl/2 1/2
/1 2dm:/1 e (—du) = — [e"])/* = —(e"? —e) = e — Ve

T
Letu = —z2, sodu = —2zdz. Whenz = 0, v = 0; when z = 1., w = —1. Thus,
Jae o= [t e (-3 du) = 4[], = —d(e7 — ') = H(1 - 1/e).

Letu = cosf,sodu = —sinfdf. When 6 = 0. u = 1; whenf = §,u = % Thus,

/3 1/2 1 1
/ ﬂd@:/ —$=/ u_zduz[—l} =-1-(-2)=1.
o cos?0 1 U 1/2 Ul

/"/2 z?sinz z2sinz |

oy 1420 dz = 0 by Theorem 7(b). since f(z) = = o6 san odd function.

Letu =1+ 2z, sodu = 2dz. Whenz = 0, u = 1; when z = 13, u = 27. Thus,

Let u = sinz, so du = coszdz. When z = 0, u = 0; when z = 7, u = 1. Thus,

27
(ddu) = [§-30"%) = 4B-1) =3

foﬂ/zcosx sin(sinx)da::folsinudu—[ cosu] = —(cosl—1)=1—cosl.
Letu =z —1,s0u+1=2xand du = dz. Whenz = 1. u = 0: when z = 2, u = 1. Thus,

1
[Peva—Tde = [} (u+1)Vadu= [} (@®?+u"/?) du= [2 ud/? 3/2]0:§+

wlin

Letu:l+2a:,so:v:—é—(u—l)anddu:de. When z = 0. u = 1; when ¢ = 4, u = 9. Thus,

1
zdr ®3(u—1)du /(u1/2 _1/2)du—%[2u3/2—2u1/2r

V14 2z 1 Vau 3 1

9
=13 {u3/2—3u“"’]1:é[<27—9>—<1—3>1=2—£=%

5l

O

LYK
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d
65. Letu = Inz, so du = ?:c When z = e, u = 1; when z = e*; u = 4. Thus.

4

€ 4 4
/ de :/ u‘1/2du:2[u1/2] =22-1)=2
e zVnz 1 1

d
L -Whenz =0,u = 0; whenz = 1. u = Z. Thus,

V1—2x2 2

66. Letu = sin™! z, so du =

in" " x

1/2 G-t /6 u2 n/6 2
——dw:/ udu = | — = —.
o V1—2z2 0 [2 L 72

4
d L 1 o _
67. /0 ﬁ does not exist since f(z) = (5‘7—*3 has an infinite discontinuity at z = 2.

2)
68. Assume a > 0. Letu = a® — 22, so du = —2x dx. When z = 0,u = a?; when z = a, u = 0. Thus.
a a2 (12
I zVa? —2dz = ffz ul/z(ﬁ%du) = %fo w2 du = 3 [§u3/2]0 = %ag.

69. Let u = 22 + a2, sodu = 2z dx and z dx = %du. When z = 0, w = a?; when z = a, u = 2a2. Thus.

2a?
a2

a 2a° 2a°
/ x\/w2+a2da::/ u'/?(L du) :%[%us/z] , = [%us/z] )
0 a a
= 3[@a)72 - (@] = (2v2 - 1)a?
0. [* z+/z? + a2 dz = 0 by Theorem 7(b). since f(z) = x /=2 + a2 is an odd function.

M. From the graph, it appears that the area under the curve is about

1+ (alittle more than - 1-0.7), or about 1.4. The exact area is given by
A= fol Vv2z + 1dz. Letu = 2z + 1, so du = 2 dz. The limits change to
2:-0+1=1and2-1+1=3,and

3
A= 2 u(l du) = %[%ug’ﬂ]l =1(3v3-1) =31 ~1.399.

72. From the graph, it appears that the area under the curve is almost 2.7

% -7 - 2.6, or about 4. The exact area is given by

A= [[(2sinz — sin2z)dx = —2[cosz]] — [ sin2z dz

=-2(-1-1)-0=4

Note: [ sin 2z dz = 0 since it is clear from the graph of y = sin 2z
that f:/z sin2zdr = — f0"/2 sin 2z dz.
73. First write the integral as a sum of two integrals:
I= fi(x +3)VA—x2de =1+ I, = fi,a: Va—z2dz + fi, 3v/4 — z2dz. I, = 0 by Theorem 7(b), since
f(z) = /4 — 22 is an odd function and we are integrating from x = —2 to x = 2. We interpret I» as three times

the area of a semicircle with radius 2,s0 I = 0+ 3 - (7 - 2%) = 6.
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78. Let u = 2. Then du = 2z dz and the limits are unchanged (0> =0and 12 = 1), so
I=[yayT—zidz =1 [} /71— u?du. Butthis integral can be interpreted as the area of a quarter-circle with
radius 1. SoI =1 -3 (n-1%) = 3.
15. First Figure Letu = /Z, 50 ¢ = v and dz = 2udu. Whenz = 0, uw = 0; when = 1, u = 1. Thus,
A=) eV®dr = fol e*(2udu) = 2[01 ue* du.
Second Figure Az = [ 2ze” dz = 2 [, ue" du.
Third Figure  Letu = sinz, so du = coszdz. When z = 0,u = 0; when z = 7, u = 1. Thus,

Az = "/2 e % sin 2z dx = 0"/2 e™*(2sinz cosz)dz = [, e*(2udu) = 2 [ ue* du.

Since A1 = Ap = As. all three areas are equal.

76. Let 7(t) = ae® with a = 450.268 and b = 1.12567, and n(t) = population after ¢ hours. Since 7(t) = n/(t),
f03 r(t) dt = n(3) — n(0) is the total change in the population after three hours. Since we start with 400 bacteria,
the population will be

n(3) = 400+ [ r(t) dt = 400 + [ ae™ dt = 400 + § [e"]; = 400 + 7 (¢ — 1)
~ 400 + 11,313 = 11,713 bacteria

77. The volume of inhaled air in the lungs at time ¢ is
V()= fo u) du = fo 3 sin(2F u)du = f:”/s 3 sinv(2 dv) [substitute v = %’ru, dv = 2% du]

=2[- cosv]%t/5 =g [—eos(Et)+1] =2 [1- cos(2t)] liters

78. Number of calculators = x(4) — fz 5000 [1 — 100(¢ + 10)~

)7%] dt
= 5000 [t+ IOO(t +10)” }2 = 5000 [(4 + 10) —

(24 12)] ~ 4048
79. Let u = 2z. Then du = 2dz, so fo f(2z)dz = fo (v)(3 du) = %fo‘l f(u)du = £(10) =5.
80. Let u = z2. Then du = 2z dz, so f03 zf(2?) dz = fog fu)(3du) = %fog flu)du=1(4) =2
81. Let w = —z. Then du = —dz, so

Jo f(=2)dz = [} f(u)(~du) = [} f(u)du= [* f(z)da

From the diagram, we see that the equality follows from the fact that we

y=Ff(x) ’ y=f(=x)

are reflecting the graph of f, and the limits of integration, about the

y-axis.
82. Letu = z + c. Then du = dz, so y
Jo f@+c)da = [IF f(u)du= [} f(z

From the diagram, we see that the equality follows from the fact that

y=flx+c) y=f(x)

we are translating the graph of f, and the limits of integration, by a

distance c.
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83. Letu=1—z. Thenz =1 — v and dz = —du, so
Jyzt(1—a)de = [ (1—w)*u’(~du) = [} u’(1 —w)*du= [} 2°(1 - z)° dz.

84. Letu = m — z. Thendu = —dx. Whenz = 7, v = 0 and whenz = 0, u = 7. So

[T zf(sinz)dz = — [2(n —u) f(sin(m — w))du = [ (7 — u) f(sinu) du
=7 [, f(sinu)du— [ uf(sinu)du =n [ f(sinz)dz — [ zf(sinz)dr

= 2[ zf(sinz)dr == [ f(sinz)de = [ zf(sinz)dz=7F [ f(sinz)dz.

zsinzx sinx . .
" Trooes % 7 snia zf(sinz), where f(t) = TR By Exercise 84,
T xsinz i ™ [T m [T sinz
/0 T co2z /Ozf(sm:c)da: 2/0 f(sinz)dz 2/0 1+cosza:d$
Letu = cosz. Then du = —sinzdx. Whenz =7, u = —1and whenz = 0, u = 1. So

E/" sinz do—_T -1 du .7 Vodu —E[t 1 ]1
2 Jo 1+cos2z ~ 2J; 1+w? 2/ 1+u® 2 an U

= g[tan_l 1- tanﬁl(él)] = %[% — (~E)] -

5.6 The Logarithm Defined as an Integral

1. (a) v We interpret In 1.5 as the area under the curve y = 1/z fromz = 1 to

z = 1.5. The area of the rectangle BCDE is % . % = % The area of the

trapezoid ABCD is 2 - 1(1 4 2) = & Thus, by comparing areas, we
22 3 12

Bl e observe that 3 < In1.5 < 5.
0 115 x

(b) With f(t) = 1/t,n = 10, and Az = 0.05, we have

Inl1.5= f ®(1/t) dt ~ (0.05)[ £(1.025) 4+ f(1.075) + - - - + f(1.475)]
= (0. 05)[1025 + 1o+ + 175 ) & 0.4054

2. (a)y= % y = _tl?' The slope of AD is 122__11 = —%. Let c be the t-coordinate of the point on y = % with
slope —%. Then ;0—12 = —% = =2 = c¢=+/2sincec > 0. Therefore, the tangent line is given by
Yy — —%t + V2.
(b) Since the graph of y = 1/t is concave upward, the graph lies above the

tangent line, that is, above the line segment BC. Now |AB| = 4% +2
and [CD| = —1 + /2. So the area of the trapezoid ABCD is

(-1 +v2)+ (-1+v2)1] = -3 + V2~ 0.6642. So
In2 > area of trapezoid ABC'D > 0.66.
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y Th fR'—1 d 1+1+ +1</n1dt Inn
s - O=4 =4 o= Zdt = .
3. e area o |s2+1an 5 t3 - 1
0
.1 1 1 "1
y Theareaof S;is —andsol+ - + -+ + —— > —dt =1nn.
1 2 n—1 1t
0
1 1 1 1 1
S 4= 14 =4 —
ThUS2+3+ +n<lnn< +2+ +n—1
4. (a) From the diagram, we see that the area under the graph of y = 1/ Y .
y=x

between z = 1 and x = 2 is less than the area of the square, whichis 1. So

In2= ff(l/x) dz < 1. To show the other side of the inequality, we must

find an area larger than 1 which lies under the graph of y = 1/x between m\
z = 1and z = 3. One way to do this is to partition the interval [1, 3] into

0 1 2 3 X
8 intervals of equal length and calculate the resulting Riemann sum. using
the right endpoints:
(1011 1 111 1) 28271
4\5/4 3/2 " 7/4 " 27 9/4 5/2 11/4 ' 3) 27,720

and therefore 1 < ff‘(l/z) dz =1n3.
A slightly easier method uses the fact that since y = 1/z is concave upward, it lies above all its tangent lines.
Drawing two such tangent lines at the points (2, 2) and (2, ), we see that the area under the curve from z = 1
to z = 3 is more than the sum of the areas of the two trapezoids, that is, % + % = i—g. Thus,
1<¥< ff(l/m) dz =1n3.
(b) By part (a), In2 < 1 < In 3. But e is defined such that Ine = 1, and because the natural logarithm function is
increasing, we have In2 <Ine<In3 & 2<e<3.
5. If f(z) = In(z"). then f'(z) = (1/2")(ra""") = r/z. Butif g(z) = rInz. then g'(z) = r/z. So f and g must
differ by a constant: In(z") = rlnz + C. Putz = 1: In(1") =rln1+C = C=0,s0ln(z") =rInz.
6. Using the second law of logarithms and Equation 10, we have In(e®/e?) = Ine® —Ine¥ =z —y = In(e® 7).
Since In is a one-to-one function, it follows that e®/e¥ = e® Y.
1. Using the third law of logarithms and Equation 10, we have Ine"® = rz = rlne® = In(e®) . Since Inis a
one-to-one function, it follows that e™* = (e .
8. Using Definition 13 and the second law of exponents for €%, we have
zlna x

— _ _ e a
a® y:e(z y)lna:ezlna ylna __ _

- eylna - J

9. Using Definition 13, the first law of logarithms, and the first law of exponents for e”, we have

(ab)z — ezln(ab) — ez(lna+lnb) — e:clna+zlnb — % lnaexlnb = a®b%.
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10. Letlog, z = r and log, y = s. Thena” = z and a® = y.

@zy=a"a®=a"" = log,(zy)=r+s=log,x+ log, y
T a , T
b)—=—=a"" = log,==r—s=log,x—lo
Y e g Y La o Y
©zV=(a"Y =a" = log,(z¥)=ry=ylog,x
5 Review

CONCEPT CHECK

1. (a) Y7, f(z}) Az is an expression for a Riemann sum of a function f.
x; is a point in the sth subinterval [z;—1, z;] and Az is the length of the subintervals.

(b) See Figure 1 in Section 5.2.

(c) In Section 5.2, see Figure 3 and the paragraph beside it.

2. (a) See Definition 5.2.2.
(b) See Figure 2 in Section 5.2.

(c) In Section 5.2, see Figure 4 and the paragraph above it.

3. See the Fundamental Theorem of Calculus after Example 9 in Section 5.3.
4. (a) See the Net Change Theorem after Example 5 in Section 5.4.

(b) f t t) dt represents the change in the amount of water in the reservoir between time ¢ and time 2.
5 () [5 120, t) dt represents the change in position of the particle from ¢ = 60 to t = 120 seconds.
®) fo 129 |4 (t)| dt represents the total distance traveled by the particle from ¢ = 60 to 120 seconds.
(c) f 120, t) dt represents the change in the velocity of the particle from ¢ = 60 to ¢ = 120 seconds.
6. (@) [ f(z) dz is the family of functions {F | F’ = f}. Any two such functions differ by a constant.
(b) The connection is given by the Evaluation Theorem: f: f(z)dx = [ [ fz) d:c]z if f is continuous.
1. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this
theorem and the paragraph that follows it at the end of Section 5.3.
8. See the Substitution Rule (5.5.4). This says that it is permissible to operate with the dz after an integral sign as if it

were a differential.

TRUE-FALSE QuIZ

1. True by Property 2 of the Integral in Section 5.2.
2. False. Trya=0.b=2, f(z) = g(z) = 1 as a counterexample.

3. True by Property 3 of the Integral in Section 5.2.
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13

. False.

. False.
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You can’t take a variable outside the integral sign. For example. using f(z) = 1 on [0, 1],

fol z f(z)de = fol zdr = [%aﬂé = 1 (a constant) whileacfo1 ldr ==z [:r](l) =z - 1 = z (a variable).

For example, let f(z) = z2. Then [ Va2 dz = [l zdz =13 but \/fol z2dx = \/g = %

. True by the Net Change Theorem.

. True by Comparison Property 7 of the Integral in Section 5.2.

. False.

. True.

. True.

. False.

. False.

. False.

For example. leta = 0.b = 1, f(z) = 3. g(z) = z. f(z) > g(z) for each z in (0, 1), but
fl(x)=0<1=g(z)forz € (0,1).

The integrand is an odd function that is continuous on [—1, 1], so the result follows from Theorem 5.5.7(b).
ffs(am2 +bz +c)dz = ffs (az® +c) dz + ffs bz dx
=2 [*(az® + ¢) dz [by 5.5.7(@)] +0 [by5.5.7(b)]

The function f(x) = 1/z* is not bounded on the interval [—2, 1]. It has an infinite discontinuity at 2 = 0,
so it is not integrable on the interval. (If the integral were to exist, a positive value would be expected, by

Comparison Property 6 of Integrals.)

See the remarks and Figure 4 before Example 1 in Section 5.2, and notice that y = = — z3 < 0 for
1<z <2

For example, the function y = |z| is continuous on R. but has no derivative at x = 0.

14. True by FTCI1.

EXERCISES

1. (a)

(b)

Il
Me

y Lg
- i

f(@o) - 1+ f(@1) - 1+ f(z2) - 1
+f(zs) 14 fza) - 1+ f(=5) - 1
~2+435+4+24(-1)+(-25)=8

The Riemann sum represents the sum of the areas of the four

1

rectangles above the x-axis minus the sum of the areas of the two

rectangles below the z-axis.

6
MG:ZJC(E:')ACL' [Ax:%zll
i=1

=f@1) 1+ f(@2) 1+ f(T3) - 1

+f(@a) - 14 f(@s) -1+ f(@e) - 1
= f(0.5) + f(1.5) + f(2-5) + f(3.5) + f(4.5) + f(5.5)
~3+39+4+34+034+(-2)+(-2.9)=5.7

The Riemann sum represents the sum of the areas of the four

rectangles above the x-axis minus the sum of the areas of the two

rectangles below the z-axis.
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2. (a) y fl@) =2’ —zand Az = 272 =05 =
Ra=05£(0.5) + 0.5£(1) + 0.5£(1.5) + 0.5£(2)
=0.5(-0254+0+0.75+2) =1.25

The Riemann sum represents the sum of the areas of the two

rectangles above the z-axis minus the area of the rectangle below the

z-axis. (The second rectangle vanishes.)

®) f; (¢* ~ z) dz = lim Xn: f(zi) Az [Az =2/nand z;, = 2i/n]

n—oo ;7]

=42 25\ [ 2 24 K. 2.
nlL“;oZ<m7)<ﬁ>nlL’%o;[mZZ X

=1

I

n—oo ’n,3 6 ’I’L2 2

'g n+l 2n+1 n—}-l}

— 1 2.
nvoo 13 n n n
= lim é(1+1>(2+1> 72(1+1>] =%1.2-2.1=2
n—oo | 3 n n n
© [y (2% —z) do = [§2° — 3]0 = (3 -2) = }
(d) y J2(2® — z) dz = A1 — Ao. where A; and A» are the areas shown in

the diagram.

y

x 0 i x

I, can be interpreted as the area of the triangle shown in the figure and I can be interpreted as the area of the
quarter-circle. Area = 3(1)(1) + (m)(1)®> = 1 + Z.

4. On [0, 7], lim i sinz; Az = [ sinzdr = [-cosz|f = — (1) — (-1) = 2.

n—oo ;1

5. f06f(w)dx:f;f(x)da:—i-fff(z)dm = 10:7—|—f46f(x)d;c = fff(x)dm:lOf?:S
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~ 5-1 4 43
5 . _ — = L — —_
(@) [] (z+22°) de = Jim E_ f(z:) Az [Am == m= 1+ n]
I 4 4i 4
:nlgr;o E_l <1+ >+2< ) ] -
4 3 2 _
— lim 1305n" + 3126nn3+ 2080n 256 . % — 5220

® JF (a+20%) de = [3a® + 30°]° = (3 +1989) — (4 + 1) = 124+ 5208 = 5220

. First note that either a or b must be the graph of fo t) dt, since fo f(t)dt = 0, and ¢(0) # 0. Now notice that
b > 0 when c is increasing, and that ¢ > 0 when q is increasing. It follows that c is the graph of f(z), b is the graph

of f'(z). and a is the graph of [ f(t) dt.

1
d rctan o arctanx us
. (a) By the Evaluation Theorem (FTCZ),/ I (ea 't )d:v — [e t ]1 —e™/t 1
0

0

d 1 . . . -
(b) . / et dr — ( since this is the derivative of a constant.
T Jo

T
(C) By FTCI, di / earctant dt = earctanz.
Z Jo

[l (82° +32%) du = [8- 1ot +3- 1% = [20% +2°) = (2.20 +2°) - (2+1) =40 -3 =37

T
/ (2 — 8z +7)de = [1a° — da® + 7z]; = (LT° — 4T? +7T) — 0 = 1T° —4T? 47T
0

Jo (U =a®)de = [z~ 52y = (1~ 55) 0=
Letu=1-z, sodu:—dzanddm:—duAWhenx:O u = 1; when z = 1, w = 0. Thus,
fo(l—:c dz = [} u®(—du) = flugdu:%{um]é 5(1-0)=4%.

- 9 9
/ \/_——Q—E—duz/(u_l/z—Qu)du=[2u1/2—u2] =(6-81)—-(2-1)=-76
1 u 1 1

1

J (Yu+1)? du= [} (u 1/2+2u1/4+1)du—[2 w32 4 By 5/4+u}0=(§+§+1)—0:‘1‘—§

Letu=y2+1 so du = 2ydy and ydy =
1

fo y(y* +1)° f ( :%[é

Letu:1+y,sodu=3y dy and y* dy —ldu Wheny =0.u = 1; wheny = 2, u = 9. Thus,

I+ dy = [ ul/?( :%[% } =2(27-1) =22

du. Wheny—O u = 1; wheny = 1, u = 2. Thus,

5(64—-1)=% =21

1
2
°l; = ;

5
dt . . 1 P .
/1 m does not exist because the function f(t) = t—ay has an infinite discontinuity at ¢ = 4;

that is, f is discontinuous on the interval [1, 5].

Let u = 37t, sodu = 3w dt. Whent = 0, u = 1; whent = 1. w = 3m. Thus,

/lsin(37rt)dt—/3“sinu idu —i[—cosu]gﬂf 1( 1-1)= 2
0 A 3m T 3w o 3x 3

Let u = v%, so du = 3v?> dv. When v = 0,u = 0; whenv = 1, u = 1. Thus,

fol v? cos(v?) dv = fol cosu (3 du) = %[Sinu]; = 3(sin1—-0) = 1sinl.
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20.

21.

22.

23.

24,

25.

26.

21.

28.

29.

30.

31.

32.

33.

34.

35.

1 . )
sin . sinz . )
/_1 1+ 22 dz = 0 by Theorem 5.5.7(b), since f(z) = T3 g2 san odd function.

fol et dt — [_l_e'rrt]; _ _11.;(67\' _ 1)

Letu =2 —3z,s0du = —3dx. Whenz = 1, u = —1; when z = 2, u = —4. Thus,

2 —4
1 1 —4
/1 2_3xdac:/—1 Y3du)=—3[Inju] "} = ~H(n4-1n1) = ~3mna.

4 2 4 2 4 4
1 - 1
/ —iz—Zidw: <—2+%—x—2)dx:/ (m_2+-l——l)da::[—l+ln]w{~z}
2 z s \22 22 =z 2 z z )

=(-3+m4-4)— (-1 +m2-2)=m2-1

10
dz does not exist because the function f(z) = has an infinite discontinuity at z = 2;
1 22 —4 4

x2 —

that is, f is discontinuous on the interval [1, 10].

Let u = x> + 4z. Then du = (2z + 4) dz = 2(z + 2) dz, so

2 _
/\/;:2:-45‘133: v (Ldu) =1 20+ C=vu+C=122+4z+C.

Letu = 3t. Then du = 3dt.so [ csc®3tdt = [ csc® u (3 du) = 3(—cotu) + C = —3 cot 3t + C.

Letu = sint. Then du = 7 coswt dt. so [sinmt cosmtdt = [u(Ldu) = 2 Ju?+ C = = (sinwt)® + C.

Let w = cosx. Then du = —sinz dz, so

[ sinz cos(cosz)dr = — [ cosudu = —sinu+ C = —sin(cosz) + C.
VZ3
Letu:ﬁ.Thendu:;—xﬁ,so/eﬁdm:2/e“du:2eu+022eﬁ+0.

Letu =Inx. Thendu:%.so/%n—w—)d:c:/cosudu=sinu+C=sin(ln:c)+C.

—sinz
Let w = In(cosz). Then du = ——— dx = — tanz dz, so
coszT

tanzIn(cosz) dz = — [wdu = —2u? + C = —1[In(cos 93)]2 +C.
2 2

Let u = z2. Then du = 2z dz, so/ = %sinﬁlu +C = %sinﬁl(wz) + C.

T dac—l/ du
Vv1—z4 T 2) Vi—u?
3 1

to=d [ L=+ o= 3meat) v
u

Letu = 1 + z*. Then du = 42> dz, so/m—
14 x4 4

Let u = 1+ 4x. Then du = 4 dz, so [ sinh(1+4z)dz = 1 [sinhudu = } coshu+ C = § cosh(1+4z)+C.

4

Letu = 1 + sec6. Then du = secf tandf, so

secf tan@ 1 1
= | T5seco = [ ~du= =In|1 ,
/ T+ sec0 de / T soc0 (secO tan 6 do) /udu Inju| +C =1n|l +sech|+C



CHAPTERS REVIEW O 483

36. Letu = 1+ tant, sodu = sec’tdt. Whent =0, u = 1; whent— .u = 2. Thus,
f"“(l—i—tant) sectdt = [ u®du= [iu“] =1(2*-1%) = %(16—1): r

3. Sincew2—4<0f0r0§m<2andz2—4>Of0r2<ac§3,wehave|z2—4|:—(z2-4):4—m2f0r
0<z<2and|2® — 4] = 2% —4for2 <z < 3. Thus,

/03|:c2—4ldw:/ ~z? dm+/(z - :[m-%s}}r[

=(8-8)-0+(9-12)— (—8):l§—3+%‘=
38. Since /Z — 1 <0for0 <z <landyz—1>0forl <z <4 wehavel|y/z-1]=—(Vz-1)=1-Vz
for0 <z < land |z — 1| =z —1forl <z <4 Thus,
1
fo I\/Ec-—1|dx—f0 (1-+x al:c—l—f1 (v —1)d :[ %m3/2] +[§w3/2—x]

0
S(1-) -0+ (-0 - (oD =i+ -ari=6-4=2

4

1

|5

In Exercises 39 and 40, let f(x) denote the integrand and F'(z) its antiderivative (with C' = 0).

39. Letu = 1 4+ sinz. Then du = cos z dzx, so

cloimstii:x _ fu—l/Z du=2u"?+C=2y1+sinz+C.

40. Letu:m2+1.Thenx2:u—landmdxz%du,so

% ) %/(ul/z—u'l/z)du

(%us/z — 2u]/2) +C

Var+1

[SIEE

@)Y - (@) e
@+ 1) [ +1) -3] +C

:%\/1‘2—%—1(:32—2)—0—0

Wl

41. From the graph, it appears that the area under the curve y = = /T

between z = 0 and x = 4 is somewhat less than half the area of an
8 x 4 rectangle, so perhaps about 13 or 14. To find the exact value,

we evaluate

f :v\/_dw—f4 3/2dm—[2 5/2] =2(4)%% = 8 =128
0
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42. From the graph. it seems as though f027' cos® z sin® z dz is equal to 0. 02

To evaluate the integral. we write the integral as

I= f027r

du = —sinz dz. Thus, I = fll u?

(1—u?)(—du) = 0.

cosQ:c(l — cos? x) sinzdr and let u = cosz = 0[

-02

43. ByFTCL, F(z) = [[ V1+t*dt = F'(z)=+1+ 2%
4. F(z)=[* tan(sz) ds = F'(z)=tan(z?)
3
= tdt 5
45. g(z) = Lety = g(u) and u = z°.
o@) = | A ety = g
dy dydu U 2 z3 2 3z°
Theng'(z) = =2 = =222 = 23,2 — 322 = .
R Pl v Y s Y oy e
46. Let u = cos z. Then du = —sinz. Also, —= _ dgdu o)
dz " dudz’

1

:z:et 1 a:et
47.y:/ —dt:/ —dt+/ S dt =
vt Vit ,

d [~ \3/1—t2dt:~i/ Yi—rar -
dz du J, d
={/1—cos?z(—sinz) =

VT ot T ot
—/ —dt+/ —dt =
1 t 1t

V1 —u2(—sinz)
—sinz Vsin?z = —(sinz)®/?

dy d ﬁet d /m et
=z == - — —dt ). Letu = . Th
dz dz (/1 t di |+ de\J, t = /. Then

dz 2z * T’
8.y = [ sin(tt)dt =

y' =sin[(3z + 1) ]

d du e* 1
_cl_u(/1 _dt>dm w o 2/T

f2 sm(t4) dt + faxﬂ sm( ) dt =

4 (33: + 1) —sin[(2z)*] -

8

. m§l

5
S
5

St sin(tt) dt — [2sin(tt) dt =
‘i (2z) = 3sin[(3z + 1)*] — 2sin[(2z)*]

9. If 1 <z <3, thenv12+3< V22 +3<+/32+3 =
2(3-1) < [PVa? ¥ 3dz <233 —1);

1
50.1F3 <z < 5.thend <z +1<6and ¢ <

—

l\:)lr—t

51
/ dz <
37 /3 z+1

r+1

2<vVz2 +3<2+/3,50
thatis, 4 < [’ /22 + 3dz < 4/3.

1 1 51
< Z <
- 6(5 3) /3 r+1

dr < %(5 — 3); that is,

e

50<z<1 = 0<cosz<1 = z?cosz<z?® =

fol z? cosz dx < fol 2 dx = %[:z:ﬂé =

% [Property 7).
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53.

55.

56.

57.

58.

59.

60.

61.
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T . . L . sinc . . .
On the interval [Z, 5] , « is increasing and sin z is decreasing, so is decreasing. Therefore, the largest value
T

of — sinz [ ] sin(m/4) = v2/2 = 2v2 . By Property 8 with M = i we get
z m/4 m/4 ™
/2 smx \/_(__E) __‘/_i

e @ 27 4) " 2~

1 1 1
cosz<1 = ecosz<e” = [/ecoszdr< [jedr=[e"],=e—1

. For0<z<10<sin'z<Z 5o zsin"'zdz< folz(g)d:cz [%mz]l =1

Let f(x) = /1 + z3 on [0, 1]. The Midpoint Rule with n = 5 gives

f V1+z3dz~ £[f(0.1) + £(0.3) + £(0.5) + f(0.7) + £(0.9)]

=3 [\/1 +(0.1)3 4+ /14 (03)3+---+/1+ (0.9)3] ~1.110

(a) displacement = f05 (t* —t)dt = [%ts -1, =8 -2 = 15 = 29.16 meters

(b) distance traveled = [ [¢* — t| dt = [t —1)|dt = Jo(t—t)dt+ INGEDIX.
e 3+ 3 - 20,

:%_%_04-(&35—25)—(%—%) l§:29.5meters

Note that 7(t) = b’(t), where b(t) = the number of barrels of oil consumed up to time . So. by the Net Change

Theorem, fo t) dt = b(3) — b(0) represents the number of barrels of oil consumed from Jan. 1, 2000, through
Jan. 1, 2003.

Distance covered = 05'0 v(t)dt ~ Ms = 80=0[y(0.5) + v(1.5) + v(2.5) +v(3.5) + v(4.5)]
= 1(4.67 + 8.86 + 10.22 4+ 10.67 + 10.81) = 45.23 m

We use the Midpoint Rule with n = 6 and At = 242 = 4. The increase in the bee population was

[2r(t)dt ~

4[r(2 6) +r(10) + r(14) 4+ r(18) 4+ (22)]
[50 + 1000 + 7000 + 8550 + 1350 + 150]
=4(18,100) = 72,400
Ay = 3bh = 3(2)(2) = 2. A2 = 3bh = 3(1)(1) = 3. and since
—V/1T =22 for 0 < z < 1 represents a quarter-mrcle with radius 1,
A3 i 2 = iw(l)2 =7.5

f—s T dx:A17A27A3:2—%—£:%(6—71').

4

y=—J1-x

By the Fundamental Theorem of Calculus, we know that F(z) = [ ¢* sin(t?) dt is an antiderivative of
flz) =z sin(m2). This integral cannot be expressed in any simpler form. Since faa fdt = 0 for any a, we can

take @ = 1, and then F/(1) = 0, as required. So F(z) = ;7 t*sin(t?) dt is the desired function.
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62. (a) C is increasing on those intervals where C” is positive. By the Fundamental Theorem of Calculus,
d e o o .
C'(z) = . [fy cos(5t%)dt] = cos(Za?). This is positive when Z2” is in the interval
((2n— )7, (2n + 4)7). n any integer. This implies that (n-Zr<iz®<(2n+ir =

0 <|z| <lorv4n —1 < |z| < v/4n + 1, n any positive integer. So C is increasing on the intervals —1,1],
[\/g, \/5]~ [_\/_7 _\/g]v [\/?w 3]s [_37 _\/7]; e

(b) C'is concave upward on those intervals where G > 0. We differentiate C” to find C"': C’(z) = cos(Zz?)
= C"(z) = —sin(32%)(5 - 2z) = —mzsin(Zz?). For z > 0, this is positive where
2n-1)r < %xz < 2nm, n any positive integer < m < z < 2+/n, n any positive integer.
Since there is a factor of —z in C", the intervals of upward concavity for z < 0 are (_\/M"‘—l) -2 \/ﬁ)
n any nonnegative integer. That is, C is concave upward on (~\/§, 0). (\/5, 2), (—\/67 -2), (\/6, 2\/5)

© 0.8
y=07

0.7 . . i . . 1.3
0 2 0.6

From the graphs, we can determine that [ cos(%t?) dt = 0.7 at z ~ 0.76 and z = 1.22.

(d) 1 . The graphs of S(z) and C(z) have similar shapes, except that S’s
¢ flattens out near the origin, while C’s does not. Note that for
/;; VAL x > 0, C is increasing where S is concave up, and C is decreasing
-5 ; S 5 where S is concave down. Similarly, S is increasing where C is
WA /"/ concave down, and S is decreasing where C'is concave up. For

x < 0, these relationships are reversed; that is, C' is increasing

-1 where S is concave down, and S is increasing where C' is concave
up. See Example 5.3.3 and Exercise 5.3.57 for a discussion
of S(z).

63. Area under the curve y = sinh cz betweenz = Oand z = 1 is

equaltol = ['sinhczdz=1 = L[cosh cx](l) =1 =
l(coshc—1)=1 = coshc—1=c = coshc=c+ 1.
From the graph, we get c = 0 and ¢ = 1.6161, butc = Oisn’ta

solution for this problem since the curve y = sinh cx becomes y = 0
and the area under it is 0. Thus, ¢ =~ 1.6161.

64. Both numerator and denominator approach 0 as a — 0, so we use ’'Hospital’s Rule. (Note that we are
differentiating with respect to a, since that is the quantity which is changing.) We also use FTC1:
cfe e~ (@—w)%/ (4kt) g, b Ce—@—a)Ykt)  Ge—a?/(akt)

lirr%) T(z,t) = lim =1

im =
a—0 aVdrkt a—0 Varkt Vdmrkt
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68.

69.
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Using FTC1, we differentiate both sides of the given equation. [ f(t) dt = ze®® + [ e ' f(t)dt, and get

e*®(1+ 2x)

flz) = €2 +2ze® f e f(z) = f(z)(l fe_I) =e*® 4+ 2ze?® = f(z) = =

The second derivative is the derivative of the first derivative. so we'll apply the Net Change Theorem with F' = .

2pMw) du = [*(W) (u)du = h'(2) — B'(1) = 5 — 2 = 3. The other information is unnecessary.
1 1

Letu = f(z) and du = f'(z)dz. So 2 [ f( de =2 [1® wdu =[] = [fO) — [f(@)]*.
_ 2+h
Let F(z / VI+ 18 dt. Then F'(2) = lim ﬁ-”g—F@ :}Lir%%/ 1+ £ dt, and
- 2
1 2+h
F'(z) = V1+ 23, sollmh 1+83dt=F'(2)=v/1+22=v9=3.
Letu:l—w.Thendu:—dm,sofolf(lﬁm)da::flof( =[5 f( du—f0

1y, 2y ° o — AN 1071
lim — (—) + (—-) + <§> +- (E) = lim 1-0 (i) :/ «®dz = | = 1
n—oon [\ 7N n n n nooo n L\ n 0 10}, 10

The limit is based on Riemann sums using right endpoints and subintervals of equal length.
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2 . . .
1. Differentiating both sides of the equation z sin 7z = fox f(t) dt (using FTC1 and the Chain Rule for the right side)

gives sinz + mz cosmx = 2zf (z°). Letting & = 2 so that f(z®) = f(4). we obtain
sin 27 + 27 cos 2w = 4f(4),s0 f(4) = (0 +27-1) = 5.

2. ByFTC2, [ f'(z)dz = f(1) — f(0) =1-0=1.

1 1
4 o4 4
3 Forl1 <z <2 wehavez® <2°=16.s01+<x §17andmjzﬁ.Thus.

Pl dz > 2-l—d:c—lAlsol%—av‘i>a:4f0r1<:c<2so—i—<—1-and
L1+ =), Y T SESEOTI S

‘1 dz < 2m_‘ld i ! + ! ! Thus. we have the estimate
—_— T = | —— = —— —-_—— —, . P’
T R A 3|, 24737 :
2
1 </ 1 l
17 =), 14247 ~ 24
2z —z? |
4. (a) From the graph of f(z) = —= it appears

that the areas are equal; that is, the area enclosed

is independent of c.

(b) We first find the z-intercepts of the curve, to determine the limits of integration: y =0 < 2cz — z2=0

< = 0orx = 2c. Now we integrate the function between these limits to find the enclosed area:
2¢ 2
203} — T 1 2 1.3 2c 1 2 1 3 1 3 8 3 4
A=/0 wa: = [ez” — 32 ]0 = g[c@c) - 1(20)°] = 6—3[4c — 2¢°] = 3. aconstant.
5

The vertices of the family of parabolas seem to

determine a branch of a hyperbola.

—/ ¢

0
(d) For a particular c, the vertex is the point where the maximum occurs. We have seen that the z-intercepts are 0

2¢(c) — 2

. . . 1 . .
and 2c, so by symmetry, the maximum occurs at * = ¢, and its value is = —. So we are interested in
c

the curve consisting of all points of the form (c, 1) ,c¢ > 0. This is the part of the hyperbola y = 1/z lying in
c

the first quadrant.
489
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g(z)
5 f(z) = ) \/— dt. where g(z) = [*°% [1 + sin(t?)] dt. Using FTCI and the Chain Rule (twice) we
have f'(z —==—=——=[1+sin(cos® z)] (- sinz). Now
\/ +1lg(z \/ 1+ [9(33)13
9(%) :fo [1+sin(t2)] =0.50 f'(3) = 1+o 1+sin0)(-1) =1-1-(-1) = -1
6. If f(z) = [ «°sin(t?) dt = Jo sin(t?) dt. then f'(z) = z*sin(2?) + 2z 15 sin(t?) dt. by the Product Rule
and FTCI.

1. By I'Hospital’s Rule and the Fundamental Theorem, using the notation exp(y) = €Y,

z—0 T z—0

7(1— tan2t)/* dt - 1/= -
lim Jo ( an 2t) Hoim (1 — tan2x) ~ exp <lim In(1 tan2x)>

z—0 x

B ool lim —2sec? 2z e -2-12 R
— P T —tan2e ) TP\ 70 ) T

8. The area A(t) = f sin(z?) dz. and the area B(t) = stsin(t?). Since lim A(t) = 0 = lim B(t). we can use

t—0t t—0t

I’'Hospital’s Rule:

Alt) v . sin(t?)
—= =1 by FTC1 and the Product Rul
=0+ BZ) ot Tein(e?) + L2tcos(ir)] (0T and the Product Rule]
H lim 2t cos(t?) ~ lim 2 cos(t?)
o+ tcos(t2) — 2t3sin(t2) + 2t cos(t2) o+ 3cos(t?) — 2t2? sin(¢?)
-2 2
3-0 3

9. flx) =24z -2 =(—z+2)(x+1)=0 & z=2o0rz=—1 f(z)>0forze[-1,2]and f(z) <0
everywhere else. The integral f: (2 +x— wz) dx has a maximum on the interval where the integrand is positive,
which is [~1,2]. Soa = —1, b = 2. (Any larger interval gives a smaller integral since f(z) < 0 outside [—1,2].
Any smaller interval also gives a smaller integral since f(z) > 0in[—1,2].)

10. This sum can be interpreted as a Riemann sum, with the right endpoints of the subintervals as

sample points and with a = 0, b = 10,000, and f (z) = /z. So we approximate

10.000 10.000
L Vi lim looo E |/ 100008 _ 10000 gy — [§w3/2]0 = 2 (1,000,000) ~ 666.667.

Alternate method: We can use graphical methods as follows: Y Jx

_ v Areaofeach Y =
From the figure we see that [ | vz dz < Vi< [*'/zdz, so

rectangle is

10,000

Jo 20V de < Z Vi< [0z dz. Since

[Vadzs = 22%2 + C, we get [} \/z dz = 666.666.6 and
0 /i N 10,000 X

J VEde = 2 [(10.001)*/2 — 1] ~ 666.766. =1 it
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10,000

Hence, 666.666.6 < > Vi < 666.766. We can estimate the sum by averaging these bounds:
i=1

10.000

~ QM%M ~ 666.716. The actual value is about 666.716.46.
1=1

11. (a) We can split the integral [;* [z] dz into the sum [fill [=] dm]. But on each of the intervals [¢ — 1,4%) of
i=1

integration, [z] is a constant function, namely ¢ — 1. So the 1th integral in the sum is equal to

n n—1
(i — 1)[i — (i — 1)] = (4 — 1). So the original integral is equal to 3 (i — 1) = i=
i=1

i=1

(n— 1)n‘
2

(b) We can write [* [¢] dz = [ [z] dz — [; [«] dz.
Now J? [z] dz = [ [¢] dz + [{,; [+] dz. The first of these integrals s equal to 5 ([b] — 1) [6], by part (@),
and since [z] = [b] on [[B] , b]. the second integral is just [5] (b — [b]). So
J¢ Tzl de = 3([6] — 1) [6] + [6] (b — [6]) = § [6] (2 — [b] — 1) and similarly

Jy [z] dz = § [a] (2a — [a] — 1). Therefore, f: [z] dz = 5 [b] (26— [B] — 1) — 1 [a] (2a — [a] — 1).

12. By FTCl, % fow( fi“t V14 ut du)dt = ffi” 1 + u4 du. Again using FTCI.

2 T rsint sinx
a4 V1+utdu dt:—d— V1+utdu=+v1+sin? zcosz.
dz? J, dz J,

1
13. Differentiating the equation [ f(t) dt = [f(z)]? using FTCI gives f(z) = 2f(z)f'(z) =

f(x)[2f'(x) —1] = 0.0 f(z) =0or f'(z) =%. f'(x) =3 = f(x) =32+ C. Tofind C we substitute into
2

the original equation to get [ (3t +C)dt = (32 +C)° & 42° +Cz = a® + Cz + C*. It follows that

C = 0,50 f(z) = z. Therefore, f(z) = 0or f(z) = jz.

14. Let z be the distance between the center of the disk and the surface of the liquid.

ff ’ The wetted circular region has area 7> — mz? while the unexposed wetted region

(shaded in the diagram) has area 2 f: V12 — t2 dt, so the exposed wetted region

has area A(z) = mr? — nx? — 2f: Vr2 —t2dt,0 < z < r. By FTCI1, we have
Al(z) = —2mx + 2712 — 22
Now A'(z) >0 = —2mz+2VrZ—-22>0 = VrZ-z2>7mz = r°—2°>7% =

2

r .
>tz = rr>2(rP+1) = 2°< = 1z < ————. and we’ll call this value z*.

r
241 Vrz+1

Since A’(z) > 0for0 < z < z* and A’(z) < 0 for z*< z < 7, we have an absolute maximum when z = z*.
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15.

16.

17.
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N"tetha‘—( / { / ft)dt} du) / £(t) dt by FTCI, while
dm[/f (z—u du}: [/f du]——[/ f(u)udu}

= [y fw)du+zf(z) - f(z)z = [T f(u)du
Hence, [ f(u)(z — ) du = [ [[* f(t)dt] du+ C. Setting z = 0 gives C = 0.

We restrict our attention to the triangle shown. A point in this

1 triangle is closer to the side shown than to any other side. so if

AN we find the area of the region R consisting of all points in the

triangle that are closer to the center than to that side, we can

multiply this area by 4 to find the total area. We find the

N ‘\ }ll equation of the set of points which are equidistant from the
-1 0 \\/5 n I * center and the side: the distance of the point (z,y) from the

side is 1 — y, and its distance from the center is \/W
So the distances are equal if m =l-y & 2°4+9°=1-QY+4*> < Y= —%(1 - :c2). Note that
the area we are interested in is equal to the area of a triangle plus a crescent-shaped area. To find these areas, we
have to find the y-coordinate h of the horizontal line separating them. From the diagram, 1 — h = v/2h <&
h = Tlﬂ = /2 — 1. We calculate the areas in terms of h, and substitute afterward.

The area of the triangle is  (2h)(h) = h?, and the area of the crescent-shaped section is

ffh [1(1-2%) —h]ldz = 2f0h(% —h—32?)dz=2[(1 —h)z - éxﬂg =h —2h* — $h3. So the area of

the whole region is

4[(h — 2% — 11%) + B?] = 4h(1—h - 3n?) =4(V2 1) [1 -(v2-1) - %(\/5—1)1

lim

-+
n—>°°<\/ﬁ\/n+ \/ﬁ\/n—}— Vnyn+n n—l—n)

lim ~ N
nl—vn;on n+1 n+2 n+n

. 1
nl—»oon<\/1+1/n \/1+2/n+'” 1+1>
= nlergo % Zf(%) [where flz) = 11+ m}

/ \/_d:cf[Q\/—] 2(v2-1)
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18. Note that the graphs of (x — ¢)® and [(z —¢) — 2)? intersect when

g—c=lz—c-2 & c-z=z-c-2 & z=c+l The integration will proceed differently

depending on the value of c.

Case 1: —2 < c < —1 Inthiscase, fo(z) = (z —c— 2)? for z € [0, 1], so
1 1 1
g(C)Z/O (x—c—2)°dr = 3 [(z—c—2)3]:} =3 (¢ —1)° = (¢ —2)°]

2
1
=i L= o)

1
3

This is a parabola; its maximum value for

—2<c< —1isg(—2) = 3.and its minimum

valueis g(—2) = 5.

(z —c)® ifo<z<c+1
Case2: =1 <c < 0 Inthiscase, f.(z) = Therefore,

(x—c—2)?7 ifec+tl<z<1
1

g(c) = /01 fe(z)dr = /OC-H(ac —c¢)’dz + (x—c—2)°dz

c+1

Sla—0 + 3 le-c=2]L, = 5 14+ (o1’ (1)

Again, this is a parabola, whose maximum value

for -1 <c<0is g(—%) = 1—72 and whose

minimum value on this c-interval is g(—1) = 3.

Case 3: 0 < ¢ < 2 Inthis case. fo(z) = (z — c)® forz € [0,1]. so

oe) = [z —oPda=1[@ -] = (1= — (-] =@ —ct}= (e~ 1)’ + &

This parabola has a maximum value of g(2) = Z

and a minimum value of g (3) = 75.

We conclude that g(c) has an absolute maximum value of g(2) = % and absolute minimum values

ofg(-3) =9(3) = %
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19. The shaded region has area fol f(z)dz = . The integral fol fHy)dy

gives the area of the unshaded region, which we know to be 1 — % = %

So fy fM () dy = 2.






